Remotely Manipulated Peg-in-Hole Task Conducted by Cable-Driven Parallel Robots
This article presents a remotely manipulated peg-in-hole task performed by a cable-driven parallel robot (CDPR) to facilitate the development of robotic fine manipulation in wide workspaces. CDPRs have offered a wide workspace with low inertia effects of actuator but have not addressed remote fine m...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2022-10, Vol.27 (5), p.3953-3963 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a remotely manipulated peg-in-hole task performed by a cable-driven parallel robot (CDPR) to facilitate the development of robotic fine manipulation in wide workspaces. CDPRs have offered a wide workspace with low inertia effects of actuator but have not addressed remote fine manipulation, thus, far. To mitigate these challenges, we developed a novel teleoperation approach that involves using identical CDPR configurations and an interactive haptic control scheme composed of global and local motions. Owing to the identical configurations, an operator can intuitively control the slave CDPR through visual feedback and admittance control containing wrench force feeling. To validate our findings, we conducted a remote peg-in-hole task in an experiment through UDP/IP communication. The results indicate that the given task was successfully completed and the required force and torque of the proposed method was reduced to 61.3% and 45.3% of the without-wrench feedback, based on our third-party force and torque measurements, respectively. The task completion time was reduced and the operator significantly adapted to the given task. The proposed method can provide a unique solution for robotic remote fine manipulation in a wide workspace with minimum control effort of an operator. |
---|---|
ISSN: | 1083-4435 1941-014X |
DOI: | 10.1109/TMECH.2022.3150108 |