CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime

We consider the concatenation of a convolutional code (CC) with an optimized cyclic redundancy check (CRC) code as a promising paradigm for good short blocklength codes. The resulting CRC-aided convolutional code naturally permits the use of serial list Viterbi decoding (SLVD) to achieve maximum-lik...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2022-06, Vol.68 (6), p.3744-3766
Hauptverfasser: Yang, Hengjie, Liang, Ethan, Pan, Minghao, Wesel, Richard D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3766
container_issue 6
container_start_page 3744
container_title IEEE transactions on information theory
container_volume 68
creator Yang, Hengjie
Liang, Ethan
Pan, Minghao
Wesel, Richard D.
description We consider the concatenation of a convolutional code (CC) with an optimized cyclic redundancy check (CRC) code as a promising paradigm for good short blocklength codes. The resulting CRC-aided convolutional code naturally permits the use of serial list Viterbi decoding (SLVD) to achieve maximum-likelihood decoding. The convolutional encoder of interest is of rate- 1/\omega and the convolutional code is either zero-terminated (ZT) or tail-biting (TB). The resulting CRC-aided convolutional code is called a CRC-ZTCC or a CRC-TBCC. To design a good CRC-aided convolutional code, we propose the distance-spectrum optimal (DSO) CRC polynomial. A DSO CRC search algorithm for the TBCC is provided. Our analysis reveals that the complexity of SLVD is governed by the expected list rank which converges to 1 at high SNR. This allows a good performance to be achieved with a small increase in complexity. In this paper, we focus on transmitting 64 information bits with a rate-1/2 convolutional encoder. For a target error probability 10^{-4} , simulations show that the best CRC-ZTCC approaches the random-coding union (RCU) bound within 0.4 dB. Several CRC-TBCCs outperform the RCU bound at moderate SNR values.
doi_str_mv 10.1109/TIT.2022.3150717
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9709319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9709319</ieee_id><sourcerecordid>2667014705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2487-d20a70c25fc4e7863a41324096fbd4b131d659706dcb1128c7f4affd8072051e3</originalsourceid><addsrcrecordid>eNo9kM1LAzEUxIMoWKt3wUvA89a8bLLZPdb1q1AUaj2HbfLSpm43utkK_vdGKp4eAzPDvB8hl8AmAKy6Wc6WE844n-QgmQJ1REYgpcqqQopjMmIMyqwSojwlZzFukxQS-Ig814s6m3qLls59HOgdmmB9t6bB0Tp0X6HdDz50TZuUxUh9R4cN0tdN6Ad62wbz3mK3HjZ0gWu_w3Ny4po24sXfHZO3h_tl_ZTNXx5n9XSeGS5KlVnOGsUMl84IVGWRNwJyLlhVuJUVK8jBFrJSrLBmBcBLo5xonLMlU5xJwHxMrg-9H3343GMc9Dbs-zQzal4UKn2nmEwudnCZPsTYo9Mfvd81_bcGpn-p6URN_1LTf9RS5OoQ8Yj4b09Tqhyq_AecHmZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667014705</pqid></control><display><type>article</type><title>CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Hengjie ; Liang, Ethan ; Pan, Minghao ; Wesel, Richard D.</creator><creatorcontrib>Yang, Hengjie ; Liang, Ethan ; Pan, Minghao ; Wesel, Richard D.</creatorcontrib><description><![CDATA[We consider the concatenation of a convolutional code (CC) with an optimized cyclic redundancy check (CRC) code as a promising paradigm for good short blocklength codes. The resulting CRC-aided convolutional code naturally permits the use of serial list Viterbi decoding (SLVD) to achieve maximum-likelihood decoding. The convolutional encoder of interest is of rate-<inline-formula> <tex-math notation="LaTeX">1/\omega </tex-math></inline-formula> and the convolutional code is either zero-terminated (ZT) or tail-biting (TB). The resulting CRC-aided convolutional code is called a CRC-ZTCC or a CRC-TBCC. To design a good CRC-aided convolutional code, we propose the distance-spectrum optimal (DSO) CRC polynomial. A DSO CRC search algorithm for the TBCC is provided. Our analysis reveals that the complexity of SLVD is governed by the expected list rank which converges to 1 at high SNR. This allows a good performance to be achieved with a small increase in complexity. In this paper, we focus on transmitting 64 information bits with a rate-1/2 convolutional encoder. For a target error probability <inline-formula> <tex-math notation="LaTeX">10^{-4} </tex-math></inline-formula>, simulations show that the best CRC-ZTCC approaches the random-coding union (RCU) bound within 0.4 dB. Several CRC-TBCCs outperform the RCU bound at moderate SNR values.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2022.3150717</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coders ; Codes ; Complexity ; Complexity theory ; Convolutional codes ; Cyclic redundancy check codes ; Decoding ; list Viterbi decoding ; Maximum likelihood decoding ; Polynomials ; Redundancy ; Search algorithms ; short blocklength regime ; undetected errors ; Viterbi algorithm ; Viterbi decoding</subject><ispartof>IEEE transactions on information theory, 2022-06, Vol.68 (6), p.3744-3766</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2487-d20a70c25fc4e7863a41324096fbd4b131d659706dcb1128c7f4affd8072051e3</citedby><cites>FETCH-LOGICAL-c2487-d20a70c25fc4e7863a41324096fbd4b131d659706dcb1128c7f4affd8072051e3</cites><orcidid>0000-0003-3356-3726 ; 0000-0002-9139-8098 ; 0000-0001-9584-8343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9709319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9709319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Hengjie</creatorcontrib><creatorcontrib>Liang, Ethan</creatorcontrib><creatorcontrib>Pan, Minghao</creatorcontrib><creatorcontrib>Wesel, Richard D.</creatorcontrib><title>CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[We consider the concatenation of a convolutional code (CC) with an optimized cyclic redundancy check (CRC) code as a promising paradigm for good short blocklength codes. The resulting CRC-aided convolutional code naturally permits the use of serial list Viterbi decoding (SLVD) to achieve maximum-likelihood decoding. The convolutional encoder of interest is of rate-<inline-formula> <tex-math notation="LaTeX">1/\omega </tex-math></inline-formula> and the convolutional code is either zero-terminated (ZT) or tail-biting (TB). The resulting CRC-aided convolutional code is called a CRC-ZTCC or a CRC-TBCC. To design a good CRC-aided convolutional code, we propose the distance-spectrum optimal (DSO) CRC polynomial. A DSO CRC search algorithm for the TBCC is provided. Our analysis reveals that the complexity of SLVD is governed by the expected list rank which converges to 1 at high SNR. This allows a good performance to be achieved with a small increase in complexity. In this paper, we focus on transmitting 64 information bits with a rate-1/2 convolutional encoder. For a target error probability <inline-formula> <tex-math notation="LaTeX">10^{-4} </tex-math></inline-formula>, simulations show that the best CRC-ZTCC approaches the random-coding union (RCU) bound within 0.4 dB. Several CRC-TBCCs outperform the RCU bound at moderate SNR values.]]></description><subject>Coders</subject><subject>Codes</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Convolutional codes</subject><subject>Cyclic redundancy check codes</subject><subject>Decoding</subject><subject>list Viterbi decoding</subject><subject>Maximum likelihood decoding</subject><subject>Polynomials</subject><subject>Redundancy</subject><subject>Search algorithms</subject><subject>short blocklength regime</subject><subject>undetected errors</subject><subject>Viterbi algorithm</subject><subject>Viterbi decoding</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEUxIMoWKt3wUvA89a8bLLZPdb1q1AUaj2HbfLSpm43utkK_vdGKp4eAzPDvB8hl8AmAKy6Wc6WE844n-QgmQJ1REYgpcqqQopjMmIMyqwSojwlZzFukxQS-Ig814s6m3qLls59HOgdmmB9t6bB0Tp0X6HdDz50TZuUxUh9R4cN0tdN6Ad62wbz3mK3HjZ0gWu_w3Ny4po24sXfHZO3h_tl_ZTNXx5n9XSeGS5KlVnOGsUMl84IVGWRNwJyLlhVuJUVK8jBFrJSrLBmBcBLo5xonLMlU5xJwHxMrg-9H3343GMc9Dbs-zQzal4UKn2nmEwudnCZPsTYo9Mfvd81_bcGpn-p6URN_1LTf9RS5OoQ8Yj4b09Tqhyq_AecHmZI</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Yang, Hengjie</creator><creator>Liang, Ethan</creator><creator>Pan, Minghao</creator><creator>Wesel, Richard D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3356-3726</orcidid><orcidid>https://orcid.org/0000-0002-9139-8098</orcidid><orcidid>https://orcid.org/0000-0001-9584-8343</orcidid></search><sort><creationdate>20220601</creationdate><title>CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime</title><author>Yang, Hengjie ; Liang, Ethan ; Pan, Minghao ; Wesel, Richard D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2487-d20a70c25fc4e7863a41324096fbd4b131d659706dcb1128c7f4affd8072051e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coders</topic><topic>Codes</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Convolutional codes</topic><topic>Cyclic redundancy check codes</topic><topic>Decoding</topic><topic>list Viterbi decoding</topic><topic>Maximum likelihood decoding</topic><topic>Polynomials</topic><topic>Redundancy</topic><topic>Search algorithms</topic><topic>short blocklength regime</topic><topic>undetected errors</topic><topic>Viterbi algorithm</topic><topic>Viterbi decoding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hengjie</creatorcontrib><creatorcontrib>Liang, Ethan</creatorcontrib><creatorcontrib>Pan, Minghao</creatorcontrib><creatorcontrib>Wesel, Richard D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Hengjie</au><au>Liang, Ethan</au><au>Pan, Minghao</au><au>Wesel, Richard D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>68</volume><issue>6</issue><spage>3744</spage><epage>3766</epage><pages>3744-3766</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[We consider the concatenation of a convolutional code (CC) with an optimized cyclic redundancy check (CRC) code as a promising paradigm for good short blocklength codes. The resulting CRC-aided convolutional code naturally permits the use of serial list Viterbi decoding (SLVD) to achieve maximum-likelihood decoding. The convolutional encoder of interest is of rate-<inline-formula> <tex-math notation="LaTeX">1/\omega </tex-math></inline-formula> and the convolutional code is either zero-terminated (ZT) or tail-biting (TB). The resulting CRC-aided convolutional code is called a CRC-ZTCC or a CRC-TBCC. To design a good CRC-aided convolutional code, we propose the distance-spectrum optimal (DSO) CRC polynomial. A DSO CRC search algorithm for the TBCC is provided. Our analysis reveals that the complexity of SLVD is governed by the expected list rank which converges to 1 at high SNR. This allows a good performance to be achieved with a small increase in complexity. In this paper, we focus on transmitting 64 information bits with a rate-1/2 convolutional encoder. For a target error probability <inline-formula> <tex-math notation="LaTeX">10^{-4} </tex-math></inline-formula>, simulations show that the best CRC-ZTCC approaches the random-coding union (RCU) bound within 0.4 dB. Several CRC-TBCCs outperform the RCU bound at moderate SNR values.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2022.3150717</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3356-3726</orcidid><orcidid>https://orcid.org/0000-0002-9139-8098</orcidid><orcidid>https://orcid.org/0000-0001-9584-8343</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2022-06, Vol.68 (6), p.3744-3766
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_9709319
source IEEE Electronic Library (IEL)
subjects Coders
Codes
Complexity
Complexity theory
Convolutional codes
Cyclic redundancy check codes
Decoding
list Viterbi decoding
Maximum likelihood decoding
Polynomials
Redundancy
Search algorithms
short blocklength regime
undetected errors
Viterbi algorithm
Viterbi decoding
title CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRC-Aided%20List%20Decoding%20of%20Convolutional%20Codes%20in%20the%20Short%20Blocklength%20Regime&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Yang,%20Hengjie&rft.date=2022-06-01&rft.volume=68&rft.issue=6&rft.spage=3744&rft.epage=3766&rft.pages=3744-3766&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2022.3150717&rft_dat=%3Cproquest_RIE%3E2667014705%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667014705&rft_id=info:pmid/&rft_ieee_id=9709319&rfr_iscdi=true