CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime
We consider the concatenation of a convolutional code (CC) with an optimized cyclic redundancy check (CRC) code as a promising paradigm for good short blocklength codes. The resulting CRC-aided convolutional code naturally permits the use of serial list Viterbi decoding (SLVD) to achieve maximum-lik...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2022-06, Vol.68 (6), p.3744-3766 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3766 |
---|---|
container_issue | 6 |
container_start_page | 3744 |
container_title | IEEE transactions on information theory |
container_volume | 68 |
creator | Yang, Hengjie Liang, Ethan Pan, Minghao Wesel, Richard D. |
description | We consider the concatenation of a convolutional code (CC) with an optimized cyclic redundancy check (CRC) code as a promising paradigm for good short blocklength codes. The resulting CRC-aided convolutional code naturally permits the use of serial list Viterbi decoding (SLVD) to achieve maximum-likelihood decoding. The convolutional encoder of interest is of rate- 1/\omega and the convolutional code is either zero-terminated (ZT) or tail-biting (TB). The resulting CRC-aided convolutional code is called a CRC-ZTCC or a CRC-TBCC. To design a good CRC-aided convolutional code, we propose the distance-spectrum optimal (DSO) CRC polynomial. A DSO CRC search algorithm for the TBCC is provided. Our analysis reveals that the complexity of SLVD is governed by the expected list rank which converges to 1 at high SNR. This allows a good performance to be achieved with a small increase in complexity. In this paper, we focus on transmitting 64 information bits with a rate-1/2 convolutional encoder. For a target error probability 10^{-4} , simulations show that the best CRC-ZTCC approaches the random-coding union (RCU) bound within 0.4 dB. Several CRC-TBCCs outperform the RCU bound at moderate SNR values. |
doi_str_mv | 10.1109/TIT.2022.3150717 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9709319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9709319</ieee_id><sourcerecordid>2667014705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2487-d20a70c25fc4e7863a41324096fbd4b131d659706dcb1128c7f4affd8072051e3</originalsourceid><addsrcrecordid>eNo9kM1LAzEUxIMoWKt3wUvA89a8bLLZPdb1q1AUaj2HbfLSpm43utkK_vdGKp4eAzPDvB8hl8AmAKy6Wc6WE844n-QgmQJ1REYgpcqqQopjMmIMyqwSojwlZzFukxQS-Ig814s6m3qLls59HOgdmmB9t6bB0Tp0X6HdDz50TZuUxUh9R4cN0tdN6Ad62wbz3mK3HjZ0gWu_w3Ny4po24sXfHZO3h_tl_ZTNXx5n9XSeGS5KlVnOGsUMl84IVGWRNwJyLlhVuJUVK8jBFrJSrLBmBcBLo5xonLMlU5xJwHxMrg-9H3343GMc9Dbs-zQzal4UKn2nmEwudnCZPsTYo9Mfvd81_bcGpn-p6URN_1LTf9RS5OoQ8Yj4b09Tqhyq_AecHmZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667014705</pqid></control><display><type>article</type><title>CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Hengjie ; Liang, Ethan ; Pan, Minghao ; Wesel, Richard D.</creator><creatorcontrib>Yang, Hengjie ; Liang, Ethan ; Pan, Minghao ; Wesel, Richard D.</creatorcontrib><description><![CDATA[We consider the concatenation of a convolutional code (CC) with an optimized cyclic redundancy check (CRC) code as a promising paradigm for good short blocklength codes. The resulting CRC-aided convolutional code naturally permits the use of serial list Viterbi decoding (SLVD) to achieve maximum-likelihood decoding. The convolutional encoder of interest is of rate-<inline-formula> <tex-math notation="LaTeX">1/\omega </tex-math></inline-formula> and the convolutional code is either zero-terminated (ZT) or tail-biting (TB). The resulting CRC-aided convolutional code is called a CRC-ZTCC or a CRC-TBCC. To design a good CRC-aided convolutional code, we propose the distance-spectrum optimal (DSO) CRC polynomial. A DSO CRC search algorithm for the TBCC is provided. Our analysis reveals that the complexity of SLVD is governed by the expected list rank which converges to 1 at high SNR. This allows a good performance to be achieved with a small increase in complexity. In this paper, we focus on transmitting 64 information bits with a rate-1/2 convolutional encoder. For a target error probability <inline-formula> <tex-math notation="LaTeX">10^{-4} </tex-math></inline-formula>, simulations show that the best CRC-ZTCC approaches the random-coding union (RCU) bound within 0.4 dB. Several CRC-TBCCs outperform the RCU bound at moderate SNR values.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2022.3150717</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coders ; Codes ; Complexity ; Complexity theory ; Convolutional codes ; Cyclic redundancy check codes ; Decoding ; list Viterbi decoding ; Maximum likelihood decoding ; Polynomials ; Redundancy ; Search algorithms ; short blocklength regime ; undetected errors ; Viterbi algorithm ; Viterbi decoding</subject><ispartof>IEEE transactions on information theory, 2022-06, Vol.68 (6), p.3744-3766</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2487-d20a70c25fc4e7863a41324096fbd4b131d659706dcb1128c7f4affd8072051e3</citedby><cites>FETCH-LOGICAL-c2487-d20a70c25fc4e7863a41324096fbd4b131d659706dcb1128c7f4affd8072051e3</cites><orcidid>0000-0003-3356-3726 ; 0000-0002-9139-8098 ; 0000-0001-9584-8343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9709319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9709319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Hengjie</creatorcontrib><creatorcontrib>Liang, Ethan</creatorcontrib><creatorcontrib>Pan, Minghao</creatorcontrib><creatorcontrib>Wesel, Richard D.</creatorcontrib><title>CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[We consider the concatenation of a convolutional code (CC) with an optimized cyclic redundancy check (CRC) code as a promising paradigm for good short blocklength codes. The resulting CRC-aided convolutional code naturally permits the use of serial list Viterbi decoding (SLVD) to achieve maximum-likelihood decoding. The convolutional encoder of interest is of rate-<inline-formula> <tex-math notation="LaTeX">1/\omega </tex-math></inline-formula> and the convolutional code is either zero-terminated (ZT) or tail-biting (TB). The resulting CRC-aided convolutional code is called a CRC-ZTCC or a CRC-TBCC. To design a good CRC-aided convolutional code, we propose the distance-spectrum optimal (DSO) CRC polynomial. A DSO CRC search algorithm for the TBCC is provided. Our analysis reveals that the complexity of SLVD is governed by the expected list rank which converges to 1 at high SNR. This allows a good performance to be achieved with a small increase in complexity. In this paper, we focus on transmitting 64 information bits with a rate-1/2 convolutional encoder. For a target error probability <inline-formula> <tex-math notation="LaTeX">10^{-4} </tex-math></inline-formula>, simulations show that the best CRC-ZTCC approaches the random-coding union (RCU) bound within 0.4 dB. Several CRC-TBCCs outperform the RCU bound at moderate SNR values.]]></description><subject>Coders</subject><subject>Codes</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Convolutional codes</subject><subject>Cyclic redundancy check codes</subject><subject>Decoding</subject><subject>list Viterbi decoding</subject><subject>Maximum likelihood decoding</subject><subject>Polynomials</subject><subject>Redundancy</subject><subject>Search algorithms</subject><subject>short blocklength regime</subject><subject>undetected errors</subject><subject>Viterbi algorithm</subject><subject>Viterbi decoding</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEUxIMoWKt3wUvA89a8bLLZPdb1q1AUaj2HbfLSpm43utkK_vdGKp4eAzPDvB8hl8AmAKy6Wc6WE844n-QgmQJ1REYgpcqqQopjMmIMyqwSojwlZzFukxQS-Ig814s6m3qLls59HOgdmmB9t6bB0Tp0X6HdDz50TZuUxUh9R4cN0tdN6Ad62wbz3mK3HjZ0gWu_w3Ny4po24sXfHZO3h_tl_ZTNXx5n9XSeGS5KlVnOGsUMl84IVGWRNwJyLlhVuJUVK8jBFrJSrLBmBcBLo5xonLMlU5xJwHxMrg-9H3343GMc9Dbs-zQzal4UKn2nmEwudnCZPsTYo9Mfvd81_bcGpn-p6URN_1LTf9RS5OoQ8Yj4b09Tqhyq_AecHmZI</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Yang, Hengjie</creator><creator>Liang, Ethan</creator><creator>Pan, Minghao</creator><creator>Wesel, Richard D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3356-3726</orcidid><orcidid>https://orcid.org/0000-0002-9139-8098</orcidid><orcidid>https://orcid.org/0000-0001-9584-8343</orcidid></search><sort><creationdate>20220601</creationdate><title>CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime</title><author>Yang, Hengjie ; Liang, Ethan ; Pan, Minghao ; Wesel, Richard D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2487-d20a70c25fc4e7863a41324096fbd4b131d659706dcb1128c7f4affd8072051e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coders</topic><topic>Codes</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Convolutional codes</topic><topic>Cyclic redundancy check codes</topic><topic>Decoding</topic><topic>list Viterbi decoding</topic><topic>Maximum likelihood decoding</topic><topic>Polynomials</topic><topic>Redundancy</topic><topic>Search algorithms</topic><topic>short blocklength regime</topic><topic>undetected errors</topic><topic>Viterbi algorithm</topic><topic>Viterbi decoding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hengjie</creatorcontrib><creatorcontrib>Liang, Ethan</creatorcontrib><creatorcontrib>Pan, Minghao</creatorcontrib><creatorcontrib>Wesel, Richard D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Hengjie</au><au>Liang, Ethan</au><au>Pan, Minghao</au><au>Wesel, Richard D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>68</volume><issue>6</issue><spage>3744</spage><epage>3766</epage><pages>3744-3766</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[We consider the concatenation of a convolutional code (CC) with an optimized cyclic redundancy check (CRC) code as a promising paradigm for good short blocklength codes. The resulting CRC-aided convolutional code naturally permits the use of serial list Viterbi decoding (SLVD) to achieve maximum-likelihood decoding. The convolutional encoder of interest is of rate-<inline-formula> <tex-math notation="LaTeX">1/\omega </tex-math></inline-formula> and the convolutional code is either zero-terminated (ZT) or tail-biting (TB). The resulting CRC-aided convolutional code is called a CRC-ZTCC or a CRC-TBCC. To design a good CRC-aided convolutional code, we propose the distance-spectrum optimal (DSO) CRC polynomial. A DSO CRC search algorithm for the TBCC is provided. Our analysis reveals that the complexity of SLVD is governed by the expected list rank which converges to 1 at high SNR. This allows a good performance to be achieved with a small increase in complexity. In this paper, we focus on transmitting 64 information bits with a rate-1/2 convolutional encoder. For a target error probability <inline-formula> <tex-math notation="LaTeX">10^{-4} </tex-math></inline-formula>, simulations show that the best CRC-ZTCC approaches the random-coding union (RCU) bound within 0.4 dB. Several CRC-TBCCs outperform the RCU bound at moderate SNR values.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2022.3150717</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3356-3726</orcidid><orcidid>https://orcid.org/0000-0002-9139-8098</orcidid><orcidid>https://orcid.org/0000-0001-9584-8343</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2022-06, Vol.68 (6), p.3744-3766 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_9709319 |
source | IEEE Electronic Library (IEL) |
subjects | Coders Codes Complexity Complexity theory Convolutional codes Cyclic redundancy check codes Decoding list Viterbi decoding Maximum likelihood decoding Polynomials Redundancy Search algorithms short blocklength regime undetected errors Viterbi algorithm Viterbi decoding |
title | CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRC-Aided%20List%20Decoding%20of%20Convolutional%20Codes%20in%20the%20Short%20Blocklength%20Regime&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Yang,%20Hengjie&rft.date=2022-06-01&rft.volume=68&rft.issue=6&rft.spage=3744&rft.epage=3766&rft.pages=3744-3766&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2022.3150717&rft_dat=%3Cproquest_RIE%3E2667014705%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667014705&rft_id=info:pmid/&rft_ieee_id=9709319&rfr_iscdi=true |