CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime

We consider the concatenation of a convolutional code (CC) with an optimized cyclic redundancy check (CRC) code as a promising paradigm for good short blocklength codes. The resulting CRC-aided convolutional code naturally permits the use of serial list Viterbi decoding (SLVD) to achieve maximum-lik...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2022-06, Vol.68 (6), p.3744-3766
Hauptverfasser: Yang, Hengjie, Liang, Ethan, Pan, Minghao, Wesel, Richard D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the concatenation of a convolutional code (CC) with an optimized cyclic redundancy check (CRC) code as a promising paradigm for good short blocklength codes. The resulting CRC-aided convolutional code naturally permits the use of serial list Viterbi decoding (SLVD) to achieve maximum-likelihood decoding. The convolutional encoder of interest is of rate- 1/\omega and the convolutional code is either zero-terminated (ZT) or tail-biting (TB). The resulting CRC-aided convolutional code is called a CRC-ZTCC or a CRC-TBCC. To design a good CRC-aided convolutional code, we propose the distance-spectrum optimal (DSO) CRC polynomial. A DSO CRC search algorithm for the TBCC is provided. Our analysis reveals that the complexity of SLVD is governed by the expected list rank which converges to 1 at high SNR. This allows a good performance to be achieved with a small increase in complexity. In this paper, we focus on transmitting 64 information bits with a rate-1/2 convolutional encoder. For a target error probability 10^{-4} , simulations show that the best CRC-ZTCC approaches the random-coding union (RCU) bound within 0.4 dB. Several CRC-TBCCs outperform the RCU bound at moderate SNR values.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2022.3150717