SRAM Write- and Performance-Assist Cells for Reducing Interconnect Resistance Effects Increased With Technology Scaling
In this article, we present static random access memory (SRAM) write- and performance-assist cells (W- and P-ACs, respectively) that can effectively resolve the degradation in writeability and performance due to the increase in interconnect resistance with technology scaling. The proposed W- and P-A...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2022-04, Vol.57 (4), p.1039-1048 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we present static random access memory (SRAM) write- and performance-assist cells (W- and P-ACs, respectively) that can effectively resolve the degradation in writeability and performance due to the increase in interconnect resistance with technology scaling. The proposed W- and P-ACs have bit-cell compatible layouts, and thus, they can be inserted into a bit-cell array without white space. Given that bit-line (BL) and BL-bar (BLB) are driven in parallel by the write driver (WD) and proposed W-AC, the effective BL resistance (R_{\mathbf {BL}} ) is reduced. This, in turn, leads to an improvement in writeability. In addition, the proposed P-AC accelerates word-line (WL) by sensing WL rising voltage and, thus, improves the read access time on the bit-cell located far from the WL driver. To measure the interconnect resistance effects, 32-kb SRAM macros with poly resistors were fabricated on 28-nm CMOS technology. The proposed W-AC achieves 100% writeability yield not only in the 3-nm resistance model but also in the sub-3-nm resistance model, while the writeability yield of the conventional scheme with a single WD decreased to 2.3\sigma in the 3-nm resistance model. The proposed P-AC reduced the read access time by 28% compared with that of the conventional scheme with a single WL driver in the 3-nm resistance model. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2021.3138785 |