A Modular Approximation Methodology for Efficient Fixed-Point Hardware Implementation of the Sigmoid Function

The sigmoid function is a widely used nonlinear activation function in neural networks. In this article, we present a modular approximation methodology for efficient fixed-point hardware implementation of the sigmoid function. Our design consists of three modules: piecewise linear (PWL) approximatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2022-10, Vol.69 (10), p.10694-10703
Hauptverfasser: Pan, Zhe, Gu, Zonghua, Jiang, Xiaohong, Zhu, Guoquan, Ma, De
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sigmoid function is a widely used nonlinear activation function in neural networks. In this article, we present a modular approximation methodology for efficient fixed-point hardware implementation of the sigmoid function. Our design consists of three modules: piecewise linear (PWL) approximation as the initial solution, Taylor series approximation of the exponential function, and Newton-Raphson method-based approximation as the final solution. Its modularity enables the designer to flexibly choose the most appropriate approximation method for each module separately. Performance evaluation results indicate that our work strikes an appropriate balance among the objectives of approximation accuracy, hardware resource utilization, and performance.
ISSN:0278-0046
1557-9948
1557-9948
DOI:10.1109/TIE.2022.3146573