The Strong Tracking Innovation Filter

Sliding innovation filter (SIF) has recently been introduced as a robust strategy for estimation of linear systems. The SIF has been extended to nonlinear systems via analytical linearization. However, as the performance of the extended SIF (ESIF) degrades in the presence of severe nonlinearities, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2022-08, Vol.58 (4), p.3261-3270
Hauptverfasser: Kiani, Maryam, Ahmadvand, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sliding innovation filter (SIF) has recently been introduced as a robust strategy for estimation of linear systems. The SIF has been extended to nonlinear systems via analytical linearization. However, as the performance of the extended SIF (ESIF) degrades in the presence of severe nonlinearities, this article has initially developed a derivative-free cubature SIF (CSIF) that uses statistical linearization for the error propagation. In addition, the SIF gain has been reformed to incorporate the innovation covariance matrix, thus reducing the estimation error. Furthermore, the adaptive fading factor has been employed to strengthen the robustness and convergence properties of the CSIF against abrupt changes of state variables. Simulation results of the proposed estimation algorithm named the strong tracking innovation filter (STIF) have been compared to those of the ESIF and the CSIF in different conditions of the modeling error in the dynamic system and statistical characteristics of the system inputs. This comparison has demonstrated the superior performance of the STIF in terms of the convergence rate, estimation accuracy, and the chattering elimination. Integration of the STIF into a sliding mode controller for the concurrent estimation and control of a Mars lander has reconfirmed the robustness and accuracy of the proposed STIF.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2022.3146800