Smart Link Adaptation and Scheduling for IIoT
A machine learning enabled link adaption (LA) and scheduling framework is presented for Industrial Internet of Things (IIoT), leveraging quasi-periodicity of traffic in IIoT. The following steps are introduced: i) a reduced complexity link establishment accounting jointly for beamforming and load ma...
Gespeichert in:
Veröffentlicht in: | IEEE networking letters 2022-03, Vol.4 (1), p.6-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A machine learning enabled link adaption (LA) and scheduling framework is presented for Industrial Internet of Things (IIoT), leveraging quasi-periodicity of traffic in IIoT. The following steps are introduced: i) a reduced complexity link establishment accounting jointly for beamforming and load management; ii) interference prediction using long short-term memory neural networks; iii) semi-coordinated scheduling based on node grouping for interference avoidance. Through numerical evaluation it is demonstrated that the proposed approach can substantially improve average spectral efficiency by as much as 62% in a realistic IIoT scenario at negligible overhead. |
---|---|
ISSN: | 2576-3156 2576-3156 |
DOI: | 10.1109/LNET.2022.3144733 |