Smart Link Adaptation and Scheduling for IIoT

A machine learning enabled link adaption (LA) and scheduling framework is presented for Industrial Internet of Things (IIoT), leveraging quasi-periodicity of traffic in IIoT. The following steps are introduced: i) a reduced complexity link establishment accounting jointly for beamforming and load ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE networking letters 2022-03, Vol.4 (1), p.6-10
Hauptverfasser: Mitev, Miroslav, Butt, M. Majid, Sehier, Philippe, Chorti, Arsenia, Rose, Luca, Lehti, Arto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A machine learning enabled link adaption (LA) and scheduling framework is presented for Industrial Internet of Things (IIoT), leveraging quasi-periodicity of traffic in IIoT. The following steps are introduced: i) a reduced complexity link establishment accounting jointly for beamforming and load management; ii) interference prediction using long short-term memory neural networks; iii) semi-coordinated scheduling based on node grouping for interference avoidance. Through numerical evaluation it is demonstrated that the proposed approach can substantially improve average spectral efficiency by as much as 62% in a realistic IIoT scenario at negligible overhead.
ISSN:2576-3156
2576-3156
DOI:10.1109/LNET.2022.3144733