ISTDU-Net: Infrared Small-Target Detection U-Net

The infrared small-target lacks effective information such as shape and texture, so it is difficult to detect small-target effectively. In order to solve this problem, a new deep learning network is proposed: Infrared Small-target Detection U-Net (ISTDU-Net). ISTDU-Net is a deep learning network bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Hou, Qingyu, Zhang, Liuwei, Tan, Fanjiao, Xi, Yuyang, Zheng, Haoliang, Li, Na
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The infrared small-target lacks effective information such as shape and texture, so it is difficult to detect small-target effectively. In order to solve this problem, a new deep learning network is proposed: Infrared Small-target Detection U-Net (ISTDU-Net). ISTDU-Net is a deep learning network based on a U-shaped structure. It converts a single frame infrared image into a target probability likelihood map of image pixels. ISTDU-Net not only introduces feature map groups in network down-sampling, sensing, and enhancing the weights of small target feature map groups to improve the characterization ability of small targets; but also introduces a fully connected layer in jump connection to suppress a large number of backgrounds with similar structures from the global receptive field, thus improving the contrast between targets and backgrounds. Experimental results show that the ISTDU-Net proposed in this letter can detect small infrared targets in complex backgrounds. Compared with other algorithms, ISTDU-Net has a better receiver operating characteristic (ROC) curve with a low false alarm rate, which the area under curve (AUC) value is 0.9977.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2022.3141584