Anomaly Detection of Disconnects Using SSTDR and Variational Autoencoders
This article utilizes variational autoencoder (VAE) and spread spectrum time domain reflectometry (SSTDR) to detect, isolate, and characterize anomalous data (or faults) in a photovoltaic (PV) array. The goal is to learn the distribution of non-faulty input signals, inspect the reconstruction error...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2022-02, Vol.22 (4), p.3484-3492 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article utilizes variational autoencoder (VAE) and spread spectrum time domain reflectometry (SSTDR) to detect, isolate, and characterize anomalous data (or faults) in a photovoltaic (PV) array. The goal is to learn the distribution of non-faulty input signals, inspect the reconstruction error of test signals, flag anomalies, and then locate or characterize the anomalous data using a predicted baseline rather than a fixed baseline that might be too rigid. The use of VAE handles imbalanced data better than other methods used for classification of PV faults because of its unsupervised nature. We consider only disconnects in this work, and our results show an overall accuracy of 96% for detecting true negatives (non-faulty data), a 99% true positive rate of detecting anomalies, 0.997 area under the ROC curve, 0.99 area under the precision-recall curve, and a maximum percentage absolute relative error of 0.40% in locating the faults on a 5-panel setup with a 59.13 m leader cable. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2022.3140922 |