A Low-Power Graph Convolutional Network Processor With Sparse Grouping for 3D Point Cloud Semantic Segmentation in Mobile Devices

A low-power graph convolutional network (GCN) processor is proposed for accelerating 3D point cloud semantic segmentation (PCSS) in real-time on mobile devices. Three key features enable the low-power GCN-based 3D PCSS. First, the new hardware-friendly GCN algorithm, sparse grouping-based dilated gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2022-04, Vol.69 (4), p.1507-1518
Hauptverfasser: Kim, Sangjin, Kim, Sangyeob, Lee, Juhyoung, Yoo, Hoi-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A low-power graph convolutional network (GCN) processor is proposed for accelerating 3D point cloud semantic segmentation (PCSS) in real-time on mobile devices. Three key features enable the low-power GCN-based 3D PCSS. First, the new hardware-friendly GCN algorithm, sparse grouping-based dilated graph convolution (SG-DGC) is proposed. SG-DGC reduces 71.7% of the overall computation and 76.9% of EMA through the sparse grouping of the point cloud. Second, the two-level pipeline (TLP) consisting of the point-level pipeline (PLP) and group-level pipelining (GLP) was proposed to improve low utilization by the imbalanced workload of GCN. The PLP enables point-level module-wise fusion (PMF) which reduces 47.4% of EMA for low power consumption. Also, center point feature reuse (CPFR) reuses computation results of the redundant operation and reduces 11.4% of computation. Finally, the GLP increased the core utilization by 21.1% by balancing the workload of graph generation and graph convolution and enable 1.1\times higher throughput. The processor is implemented with 65nm CMOS technology, and the 4.0mm 2 3D PCSS processor show 95mW power consumption while operating in real-time of 30.8 fps in the 3D PCSS of the indoor scene with 4k points.
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2021.3137259