A 37-Gb/s Monolithically Integrated Electro-Optical Transmitter in a Silicon Photonics 250-nm BiCMOS Process
In this paper, the design of a monolithically integrated electro-optical transmitter is studied. The circuit was realized in an electro-photonic 250-nm technology which integrates a silicon photonics Mach-Zehnder modulator (MZM) and an electrical Bi-CMOS driver on the same chip. The circuit reaches...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2022-04, Vol.40 (7), p.2080-2086 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the design of a monolithically integrated electro-optical transmitter is studied. The circuit was realized in an electro-photonic 250-nm technology which integrates a silicon photonics Mach-Zehnder modulator (MZM) and an electrical Bi-CMOS driver on the same chip. The circuit reaches on-off keying data rates up to 37 Gb/s, thus being, to the best of the authors' knowledge, the fastest monolithically integrated electro-optical transmitter in the literature (in terms of symbol rate). We show that by employing a high-swing, open-collector electrical driver, a compact MZM assembly with short-length phase shifters (2 mm) can be realized, while still reaching a high extinction ratio (ER) of 7.6 dB (at 35 Gb/s). The open-collector design approach allowed to increase the data rate while reducing the DC power consumption. In this work, we prove that one of the main drawbacks of MZM-based transmitters, namely their large chip footprint, can be overcome without sacrificing the speed, ER or the power consumption of the transmitter. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2021.3133668 |