Data Sensing and Offloading in Edge Computing Networks: TDMA or NOMA?
With the development of Internet-of-Things (IoT), we witness the explosive growth in the number of devices with sensing, computing, and communication capabilities, along with a large amount of raw data generated at the network edge. Mobile (multi-access) edge computing (MEC), acquiring and processin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2022-06, Vol.21 (6), p.4497-4508 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the development of Internet-of-Things (IoT), we witness the explosive growth in the number of devices with sensing, computing, and communication capabilities, along with a large amount of raw data generated at the network edge. Mobile (multi-access) edge computing (MEC), acquiring and processing data at network edge (like base station (BS)) via wireless links, has emerged as a promising technique for real-time applications. In this paper, we consider the scenario that multiple devices sense then offload data to an edge server/BS, and the offloading throughput maximization problems are studied by joint radio-and-computation resource allocation, based on time-division multiple access (TDMA) and non-orthogonal multiple access (NOMA) multiuser computation offloading. Particularly, we take the sequence of TDMA-based multiuser transmission/offloading into account. The studied problems are NP-hard and non-convex. A set of low-complexity algorithms are designed based on decomposition approach and exploration of valuable insights of problems. They are either optimal or can achieve close-to-optimal performance as shown by simulation. The comprehensive simulation results show that the sequence-optimized TDMA scheme achieves better throughput performance than the NOMA scheme, while the NOMA scheme is better under the assumptions of time-sharing strategy and the identical sensing capability of the devices. |
---|---|
ISSN: | 1536-1276 1558-2248 |
DOI: | 10.1109/TWC.2021.3130599 |