Monotonicity of the Trace-Inverse of Covariance Submatrices and Two-Sided Prediction
It is common to assess the "memory strength" of a stationary process by looking at how fast the normalized log-determinant of its covariance submatrices (i.e., entropy rate) decreases. In this work, we propose an alternative characterization in terms of the normalized trace-inverse of the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2022-04, Vol.68 (4), p.2767-2781 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is common to assess the "memory strength" of a stationary process by looking at how fast the normalized log-determinant of its covariance submatrices (i.e., entropy rate) decreases. In this work, we propose an alternative characterization in terms of the normalized trace-inverse of the covariance submatrices. We show that this sequence is monotonically non-decreasing and is constant if and only if the process is white. Furthermore, while the entropy rate is associated with one-sided prediction errors (present from past), the new measure is associated with two-sided prediction errors (present from past and future). Minimizing this measure is then used as an alternative to Burg's maximum-entropy principle for spectral estimation. We also propose a counterpart for non-stationary processes, by looking at the average trace-inverse of subsets. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2021.3131912 |