Clustering of web users using session-based similarity measures
One important research topic in web usage mining is the clustering of web users based on their common properties. Informative knowledge obtained from web user clusters were used for many applications, such as the prefetching of pages between web clients and proxies. This paper presents an approach f...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One important research topic in web usage mining is the clustering of web users based on their common properties. Informative knowledge obtained from web user clusters were used for many applications, such as the prefetching of pages between web clients and proxies. This paper presents an approach for measuring similarity of interests among web users from their past access behaviors. The similarity measures are based on the user sessions extracted from the user's access logs. A multi-level scheme for clustering a large number of web users is proposed, as an extension to the method proposed in our previous work (2001). Experiments were conducted and the results obtained show that our clustering method is capable of clustering web users with similar interests. |
---|---|
DOI: | 10.1109/ICCNMC.2001.962600 |