Clustering of web users using session-based similarity measures

One important research topic in web usage mining is the clustering of web users based on their common properties. Informative knowledge obtained from web user clusters were used for many applications, such as the prefetching of pages between web clients and proxies. This paper presents an approach f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jitian Xiao, Yanchun Zhang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One important research topic in web usage mining is the clustering of web users based on their common properties. Informative knowledge obtained from web user clusters were used for many applications, such as the prefetching of pages between web clients and proxies. This paper presents an approach for measuring similarity of interests among web users from their past access behaviors. The similarity measures are based on the user sessions extracted from the user's access logs. A multi-level scheme for clustering a large number of web users is proposed, as an extension to the method proposed in our previous work (2001). Experiments were conducted and the results obtained show that our clustering method is capable of clustering web users with similar interests.
DOI:10.1109/ICCNMC.2001.962600