The Second Source Harmonic Optimization in Continuous Class-GF Power Amplifiers
In this letter, the second source harmonic in continuous-mode class GF (CCGF) is optimized to flatten the power amplifier's (PA) frequency response over a wideband. A new design space is explored by considering the effects of controlling the input nonlinearity of the gate-source capacitance ( C...
Gespeichert in:
Veröffentlicht in: | IEEE microwave and wireless components letters 2022-04, Vol.32 (4), p.316-319 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, the second source harmonic in continuous-mode class GF (CCGF) is optimized to flatten the power amplifier's (PA) frequency response over a wideband. A new design space is explored by considering the effects of controlling the input nonlinearity of the gate-source capacitance ( C_{\mathrm {gs}} ) on the drain current waveforms under continuous-mode drain voltage waveforms. A wideband CCGF PA is designed and fabricated using a commercial 10-W gallium nitride (GaN) device and low-temperature co-fired ceramic (LTCC) technology. Results of the measurement show a flat frequency response from 3.3 to 4.3 GHz with variations less than ±0.4 dB for 40 dBm output power, and 17 dB large signal gain at 3-dB compression point. A drain efficiency of 66 ± 2% is achieved over the entire bandwidth. |
---|---|
ISSN: | 1531-1309 2771-957X 1558-1764 2771-9588 |
DOI: | 10.1109/LMWC.2021.3128497 |