Wireless Control of Modular Multilevel Converter Submodules With Communication Errors

Wireless control of modular multilevel converter (MMC) submodules can benefit from different points of view, such as lower converter cost and shorter installation time. In return for the advantages, the stochastic performance of wireless communication networks necessitates an advanced converter cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2022-11, Vol.69 (11), p.11644-11653
Hauptverfasser: Ciftci, Bars, Harnefors, Lennart, Wang, Xiongfei, Gross, James, Norrga, Staffan, Nee, Hans-Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wireless control of modular multilevel converter (MMC) submodules can benefit from different points of view, such as lower converter cost and shorter installation time. In return for the advantages, the stochastic performance of wireless communication networks necessitates an advanced converter control system immune to the losses and delays of the wirelessly transmitted data. This article proposes an advancement to the distributed control of MMCs to be utilized in wireless submodule control. Using the proposed method, the operation of the MMC continues smoothly and uninterruptedly during wireless communication errors. The previously proposed submodule wireless control concept relies on implementing the modulation and individual submodule-capacitor-voltage control in the submodules using the insertion indices transmitted from a central controller. This article takes the concept as a basis and introduces to synthesize the indices autonomously in the submodules during the communication errors. This new approach allows the MMC continue its operation when one, some, or all submodules suffer from communication errors for a limited time. The proposal is validated experimentally on a laboratory-scale MMC.
ISSN:0278-0046
1557-9948
1557-9948
DOI:10.1109/TIE.2021.3125664