Partially Linear Bayesian Estimation Using Mixed-Resolution Data
In this letter, we consider Bayesian parameterestimation using mixed-resolution data consisting of both analog and 1-bit quantized measurements. We investigate the use of the partially linear minimum mean-squared-error (PL-MMSE) estimator for this mixed-resolution scheme. The use of the PL-MMSE esti...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2021, Vol.28, p.2202-2206 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, we consider Bayesian parameterestimation using mixed-resolution data consisting of both analog and 1-bit quantized measurements. We investigate the use of the partially linear minimum mean-squared-error (PL-MMSE) estimator for this mixed-resolution scheme. The use of the PL-MMSE estimator, proposed for general models with "straightforward" and "complicated" parts, has not been demonstrated for quantized data. We derive closed-form analytic expressions for the linear minimum mean-squared-error (LMMSE) and for the PL-MMSE estimator for the mixed-resolution scheme with linear Gaussian orthonormal measurements. We discuss the properties of the proposed PL-MMSE estimator and show that in this case, the PL-MMSE is the sum of a linear function of the quantized measurements and a general Borel measurable function of the analog measurements. In the simulations, we show that the PL-MMSE estimator outperforms the LMMSE estimator for the problem of channel estimation in multiple-input-multiple-output (MIMO) communication systems with mixed analog-to-digital converters (ADCs). |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2021.3125273 |