Approximation algorithms for the job interval selection problem and related scheduling problems
The authors consider the job interval selection problem (JISP), a simple scheduling model with a rich history and numerous applications. Special cases of this problem include the so-called real-time scheduling problem (also known as the throughput maximization problem) in single and multiple machine...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors consider the job interval selection problem (JISP), a simple scheduling model with a rich history and numerous applications. Special cases of this problem include the so-called real-time scheduling problem (also known as the throughput maximization problem) in single and multiple machine environments. In these special cases we have to maximize the number of jobs scheduled between their release date and deadline (preemption is not allowed). Even the single machine case is NP-hard. The unrelated machines case, as well as other special cases of JISP, are MAX SNP-hard. A simple greedy algorithm gives a 2-approximation for JISP. Despite many efforts, this was the best approximation guarantee known, even for throughput maximization on a single machine. The authors break this barrier and show an approximation guarantee of less than 1.582 for arbitrary instances of JISP. For some special cases, we show better results. Our methods can be used to give improved bounds for some related resource allocation problems that were considered recently in the literature. |
---|---|
ISSN: | 1552-5244 0272-5428 2168-9253 |
DOI: | 10.1109/SFCS.2001.959909 |