Algorithms for cooperative multisensor surveillance

The Video Surveillance and Monitoring (VSAM) team at Carnegie Mellon University (CMU) has developed an end-to-end, multicamera surveillance system that allows a single human operator to monitor activities in a cluttered environment using a distributed network of active video sensors. Video understan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2001-10, Vol.89 (10), p.1456-1477
Hauptverfasser: Collins, R.T., Lipton, A.J., Fujiyoshi, H., Kanade, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Video Surveillance and Monitoring (VSAM) team at Carnegie Mellon University (CMU) has developed an end-to-end, multicamera surveillance system that allows a single human operator to monitor activities in a cluttered environment using a distributed network of active video sensors. Video understanding algorithms have been developed to automatically detect people and vehicles, seamlessly track them using a network of cooperating active sensors, determine their three-dimensional locations with respect to a geospatial site model, and present this information to a human operator who controls the system through a graphical user interface. The goal is to automatically collect and disseminate real-time information to improve the situational awareness of security providers and decision makers. The feasibility of real-time video surveillance has been demonstrated within a multicamera testbed system developed on the campus of CMU. This paper presents an overview of the issues and algorithms involved in creating this semiautonomous, multicamera surveillance system.
ISSN:0018-9219
1558-2256
DOI:10.1109/5.959341