Compressed Sensing MRI by Integrating Deep Denoiser and Weighted Schatten P-Norm Minimization
To efficiently reconstruct magnetic resonance images (MRI) from highly undersampled measurements by using compressed sensing (CS), in this letter, we propose a hybrid regularization model from deep prior and low-rank prior. The local deep prior is explored by a fast flexible denoising convolutional...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2022, Vol.29, p.21-25 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To efficiently reconstruct magnetic resonance images (MRI) from highly undersampled measurements by using compressed sensing (CS), in this letter, we propose a hybrid regularization model from deep prior and low-rank prior. The local deep prior is explored by a fast flexible denoising convolutional neural network (FFDNet). To compensate for 1) the generalization capability of FFDNet on artifact noise caused by undersampling K-space and 2) the inaccurate noise estimation for various undersampling ratios, we model the low-rank prior as a weighted Schatten p-norm to obtain the global information of MRIs. The final model, combined by the local deep and low-rank priors, is solved by the alternating directional method of multipliers under the plug-and-play framework. Compared with the popular CS-MRI approaches, the experimental results demonstrate that the proposed method can achieve better reconstruction performance in terms of quality index and visual effects. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2021.3122338 |