Upgraded Fiber-Optic Sensor System for Dynamic Strain Measurement in Spallation Neutron Source

We describe an upgraded fiber-optic sensor system and its performance in measuring the dynamic strains in a mercury target of the Spallation Neutron Source (SNS). Strains result from dynamic pressure waves in the stainless-steel mercury target induced by short (~700 ns), intense (up to 23.3 kJ), hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-12, Vol.21 (23), p.26772-26784
Hauptverfasser: Liu, Yun, Winder, Drew E., Qi, Bing, Long, Cary D., Lu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe an upgraded fiber-optic sensor system and its performance in measuring the dynamic strains in a mercury target of the Spallation Neutron Source (SNS). Strains result from dynamic pressure waves in the stainless-steel mercury target induced by short (~700 ns), intense (up to 23.3 kJ), high-energy (~1 GeV) proton pulses. In the upgraded sensor system, the output of each sensor head is interrogated with a compact, all-fiber based Faraday Michelson interferometer, which generates interference signals with a steady phase shift. Strain waveforms are recovered from the phase-shifted interference signals using a high-speed digital signal processing procedure developed in our previous work. We demonstrate successful measurements of dynamic strain pulses, e.g., 400 \mu \varepsilon over 190 \mu \text{s} , on a recently installed SNS target using the upgraded sensor system. The measured strain waveforms are analyzed for more than 20 sensor locations and/or orientations, and provide information regarding the temporal structure of strain profiles and dependence of the strain magnitude on the proton powers of 200 - 1400 kW. The new interrogator also measures the radiation-induced-attenuation (RIA) in the optical fiber, enabling experimental investigations of RIA profiles induced by a 700-ns radiation pulse. The radiation effects on the strain measurement performance are discussed over a radiation dose range of up to {4}\times {10}^{{8}} Gy and an RIA compensation method is proposed. The measurements allow insight into the response of this unique piece of equipment and can be used for validation of simulations.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2021.3120212