RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation

Assisted bilateral rehabilitation has been proven to help patients improve their paretic limb ability and promote motor recovery, especially in upper limbs, after suffering a cerebrovascular accident (ACV). Robotic-assisted bilateral rehabilitation based on sEMG-driven control has been previously ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.137809-137823
Hauptverfasser: Cisnal, Ana, Perez-Turiel, Javier, Fraile, Juan-Carlos, Sierra, David, de la Fuente, Eusebio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137823
container_issue
container_start_page 137809
container_title IEEE access
container_volume 9
creator Cisnal, Ana
Perez-Turiel, Javier
Fraile, Juan-Carlos
Sierra, David
de la Fuente, Eusebio
description Assisted bilateral rehabilitation has been proven to help patients improve their paretic limb ability and promote motor recovery, especially in upper limbs, after suffering a cerebrovascular accident (ACV). Robotic-assisted bilateral rehabilitation based on sEMG-driven control has been previously addressed in other studies to improve hand mobility; however, low-cost embedded solutions for the real-time bio-cooperative control of robotic rehabilitation platforms are lacking. This paper presents the RobHand (Robot for Hand Rehabilitation) system, which is an exoskeleton that supports EMG-driven assisted bilateral by using a custom-made low-cost EMG real-time embedded solution. A threshold non-pattern recognition EMG-driven control for RobHand has been developed, and it detects hand gestures of the healthy hand and replicates the gesture on the exoskeleton placed on the paretic hand. A preliminary study with ten healthy subjects is conducted to evaluate the performance in reliability, tracking accuracy and response time of the proposed EMG-driven control strategy using the EMG real-time embedded solution, and the findings could be extrapolated to stroke patients. A systematic review has been carried out to compare the results of the study, which present a 97% of overall accuracy for the detection of hand gestures and indicate the adequate time responsiveness of the system.
doi_str_mv 10.1109/ACCESS.2021.3118281
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9562297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9562297</ieee_id><doaj_id>oai_doaj_org_article_1d40230ca6d14137b50b45fb044c9d05</doaj_id><sourcerecordid>2581570805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-dda71c8138e0efda68b1cc2289b16779917befe01cc2f9596a2f17004505c2613</originalsourceid><addsrcrecordid>eNpNkcFu1DAURSMEElXbL-jGEusMfnac2OyGNEwrFSHaIpaWY79MPWTi4ngQ8xd8cpOmqvDmWVf3nmfrZtkF0BUAVR_Xdd3c3a0YZbDiAJJJeJOdMChVzgUv3_53f5-dj-OOTkdOkqhOsn-3ob0yg_tE1mSepPkbxl_YYwoD-enTA7lF0-f3fo-k-brJL6P_gwNp9i06h47UYUgx9Cvy_WCG5LujH7YLaINjOkSc8jZsB5_8BLzE3hxH0oVIPvveJIymnwwPpvW9T2b2nGXvOtOPeP4yT7MfX5r7-iq_-ba5rtc3uS2oTLlzpgIrgUuk2DlTyhasZUyqFsqqUgqqFjuks9gpoUrDOqgoLQQVlpXAT7PrheuC2enH6PcmHnUwXj8LIW61icnbHjW4gjJOrSkdFMCrVtC2EF1Li8IqR8XE-rCwHmP4fZj-rXfhEIfp-ZoJCaKi8tnFF5eNYRwjdq9bgeq5Sb00qecm9UuTU-piSXlEfE0oUTKmKv4EQ12ZXA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581570805</pqid></control><display><type>article</type><title>RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cisnal, Ana ; Perez-Turiel, Javier ; Fraile, Juan-Carlos ; Sierra, David ; de la Fuente, Eusebio</creator><creatorcontrib>Cisnal, Ana ; Perez-Turiel, Javier ; Fraile, Juan-Carlos ; Sierra, David ; de la Fuente, Eusebio</creatorcontrib><description>Assisted bilateral rehabilitation has been proven to help patients improve their paretic limb ability and promote motor recovery, especially in upper limbs, after suffering a cerebrovascular accident (ACV). Robotic-assisted bilateral rehabilitation based on sEMG-driven control has been previously addressed in other studies to improve hand mobility; however, low-cost embedded solutions for the real-time bio-cooperative control of robotic rehabilitation platforms are lacking. This paper presents the RobHand (Robot for Hand Rehabilitation) system, which is an exoskeleton that supports EMG-driven assisted bilateral by using a custom-made low-cost EMG real-time embedded solution. A threshold non-pattern recognition EMG-driven control for RobHand has been developed, and it detects hand gestures of the healthy hand and replicates the gesture on the exoskeleton placed on the paretic hand. A preliminary study with ten healthy subjects is conducted to evaluate the performance in reliability, tracking accuracy and response time of the proposed EMG-driven control strategy using the EMG real-time embedded solution, and the findings could be extrapolated to stroke patients. A systematic review has been carried out to compare the results of the study, which present a 97% of overall accuracy for the detection of hand gestures and indicate the adequate time responsiveness of the system.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3118281</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cooperative control ; Electromyography ; embedded software ; Exoskeletons ; Gesture recognition ; Low cost ; Medical treatment ; Pattern recognition ; Real time ; Real-time systems ; Rehabilitation ; rehabilitation robotics ; Rehabilitation robots ; Reliability analysis ; Response time ; Robot control ; Robot sensing systems ; Stroke ; Stroke (medical condition) ; Training</subject><ispartof>IEEE access, 2021, Vol.9, p.137809-137823</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-dda71c8138e0efda68b1cc2289b16779917befe01cc2f9596a2f17004505c2613</citedby><cites>FETCH-LOGICAL-c408t-dda71c8138e0efda68b1cc2289b16779917befe01cc2f9596a2f17004505c2613</cites><orcidid>0000-0002-4860-4781 ; 0000-0002-1556-7179 ; 0000-0002-2877-7300 ; 0000-0002-7731-2411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9562297$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4014,27624,27914,27915,27916,54924</link.rule.ids></links><search><creatorcontrib>Cisnal, Ana</creatorcontrib><creatorcontrib>Perez-Turiel, Javier</creatorcontrib><creatorcontrib>Fraile, Juan-Carlos</creatorcontrib><creatorcontrib>Sierra, David</creatorcontrib><creatorcontrib>de la Fuente, Eusebio</creatorcontrib><title>RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Assisted bilateral rehabilitation has been proven to help patients improve their paretic limb ability and promote motor recovery, especially in upper limbs, after suffering a cerebrovascular accident (ACV). Robotic-assisted bilateral rehabilitation based on sEMG-driven control has been previously addressed in other studies to improve hand mobility; however, low-cost embedded solutions for the real-time bio-cooperative control of robotic rehabilitation platforms are lacking. This paper presents the RobHand (Robot for Hand Rehabilitation) system, which is an exoskeleton that supports EMG-driven assisted bilateral by using a custom-made low-cost EMG real-time embedded solution. A threshold non-pattern recognition EMG-driven control for RobHand has been developed, and it detects hand gestures of the healthy hand and replicates the gesture on the exoskeleton placed on the paretic hand. A preliminary study with ten healthy subjects is conducted to evaluate the performance in reliability, tracking accuracy and response time of the proposed EMG-driven control strategy using the EMG real-time embedded solution, and the findings could be extrapolated to stroke patients. A systematic review has been carried out to compare the results of the study, which present a 97% of overall accuracy for the detection of hand gestures and indicate the adequate time responsiveness of the system.</description><subject>Cooperative control</subject><subject>Electromyography</subject><subject>embedded software</subject><subject>Exoskeletons</subject><subject>Gesture recognition</subject><subject>Low cost</subject><subject>Medical treatment</subject><subject>Pattern recognition</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Rehabilitation</subject><subject>rehabilitation robotics</subject><subject>Rehabilitation robots</subject><subject>Reliability analysis</subject><subject>Response time</subject><subject>Robot control</subject><subject>Robot sensing systems</subject><subject>Stroke</subject><subject>Stroke (medical condition)</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFu1DAURSMEElXbL-jGEusMfnac2OyGNEwrFSHaIpaWY79MPWTi4ngQ8xd8cpOmqvDmWVf3nmfrZtkF0BUAVR_Xdd3c3a0YZbDiAJJJeJOdMChVzgUv3_53f5-dj-OOTkdOkqhOsn-3ob0yg_tE1mSepPkbxl_YYwoD-enTA7lF0-f3fo-k-brJL6P_gwNp9i06h47UYUgx9Cvy_WCG5LujH7YLaINjOkSc8jZsB5_8BLzE3hxH0oVIPvveJIymnwwPpvW9T2b2nGXvOtOPeP4yT7MfX5r7-iq_-ba5rtc3uS2oTLlzpgIrgUuk2DlTyhasZUyqFsqqUgqqFjuks9gpoUrDOqgoLQQVlpXAT7PrheuC2enH6PcmHnUwXj8LIW61icnbHjW4gjJOrSkdFMCrVtC2EF1Li8IqR8XE-rCwHmP4fZj-rXfhEIfp-ZoJCaKi8tnFF5eNYRwjdq9bgeq5Sb00qecm9UuTU-piSXlEfE0oUTKmKv4EQ12ZXA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Cisnal, Ana</creator><creator>Perez-Turiel, Javier</creator><creator>Fraile, Juan-Carlos</creator><creator>Sierra, David</creator><creator>de la Fuente, Eusebio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4860-4781</orcidid><orcidid>https://orcid.org/0000-0002-1556-7179</orcidid><orcidid>https://orcid.org/0000-0002-2877-7300</orcidid><orcidid>https://orcid.org/0000-0002-7731-2411</orcidid></search><sort><creationdate>2021</creationdate><title>RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation</title><author>Cisnal, Ana ; Perez-Turiel, Javier ; Fraile, Juan-Carlos ; Sierra, David ; de la Fuente, Eusebio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-dda71c8138e0efda68b1cc2289b16779917befe01cc2f9596a2f17004505c2613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cooperative control</topic><topic>Electromyography</topic><topic>embedded software</topic><topic>Exoskeletons</topic><topic>Gesture recognition</topic><topic>Low cost</topic><topic>Medical treatment</topic><topic>Pattern recognition</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Rehabilitation</topic><topic>rehabilitation robotics</topic><topic>Rehabilitation robots</topic><topic>Reliability analysis</topic><topic>Response time</topic><topic>Robot control</topic><topic>Robot sensing systems</topic><topic>Stroke</topic><topic>Stroke (medical condition)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cisnal, Ana</creatorcontrib><creatorcontrib>Perez-Turiel, Javier</creatorcontrib><creatorcontrib>Fraile, Juan-Carlos</creatorcontrib><creatorcontrib>Sierra, David</creatorcontrib><creatorcontrib>de la Fuente, Eusebio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cisnal, Ana</au><au>Perez-Turiel, Javier</au><au>Fraile, Juan-Carlos</au><au>Sierra, David</au><au>de la Fuente, Eusebio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>137809</spage><epage>137823</epage><pages>137809-137823</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Assisted bilateral rehabilitation has been proven to help patients improve their paretic limb ability and promote motor recovery, especially in upper limbs, after suffering a cerebrovascular accident (ACV). Robotic-assisted bilateral rehabilitation based on sEMG-driven control has been previously addressed in other studies to improve hand mobility; however, low-cost embedded solutions for the real-time bio-cooperative control of robotic rehabilitation platforms are lacking. This paper presents the RobHand (Robot for Hand Rehabilitation) system, which is an exoskeleton that supports EMG-driven assisted bilateral by using a custom-made low-cost EMG real-time embedded solution. A threshold non-pattern recognition EMG-driven control for RobHand has been developed, and it detects hand gestures of the healthy hand and replicates the gesture on the exoskeleton placed on the paretic hand. A preliminary study with ten healthy subjects is conducted to evaluate the performance in reliability, tracking accuracy and response time of the proposed EMG-driven control strategy using the EMG real-time embedded solution, and the findings could be extrapolated to stroke patients. A systematic review has been carried out to compare the results of the study, which present a 97% of overall accuracy for the detection of hand gestures and indicate the adequate time responsiveness of the system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3118281</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4860-4781</orcidid><orcidid>https://orcid.org/0000-0002-1556-7179</orcidid><orcidid>https://orcid.org/0000-0002-2877-7300</orcidid><orcidid>https://orcid.org/0000-0002-7731-2411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.137809-137823
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9562297
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Cooperative control
Electromyography
embedded software
Exoskeletons
Gesture recognition
Low cost
Medical treatment
Pattern recognition
Real time
Real-time systems
Rehabilitation
rehabilitation robotics
Rehabilitation robots
Reliability analysis
Response time
Robot control
Robot sensing systems
Stroke
Stroke (medical condition)
Training
title RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RobHand:%20A%20Hand%20Exoskeleton%20With%20Real-Time%20EMG-Driven%20Embedded%20Control.%20Quantifying%20Hand%20Gesture%20Recognition%20Delays%20for%20Bilateral%20Rehabilitation&rft.jtitle=IEEE%20access&rft.au=Cisnal,%20Ana&rft.date=2021&rft.volume=9&rft.spage=137809&rft.epage=137823&rft.pages=137809-137823&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3118281&rft_dat=%3Cproquest_ieee_%3E2581570805%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581570805&rft_id=info:pmid/&rft_ieee_id=9562297&rft_doaj_id=oai_doaj_org_article_1d40230ca6d14137b50b45fb044c9d05&rfr_iscdi=true