RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation
Assisted bilateral rehabilitation has been proven to help patients improve their paretic limb ability and promote motor recovery, especially in upper limbs, after suffering a cerebrovascular accident (ACV). Robotic-assisted bilateral rehabilitation based on sEMG-driven control has been previously ad...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.137809-137823 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137823 |
---|---|
container_issue | |
container_start_page | 137809 |
container_title | IEEE access |
container_volume | 9 |
creator | Cisnal, Ana Perez-Turiel, Javier Fraile, Juan-Carlos Sierra, David de la Fuente, Eusebio |
description | Assisted bilateral rehabilitation has been proven to help patients improve their paretic limb ability and promote motor recovery, especially in upper limbs, after suffering a cerebrovascular accident (ACV). Robotic-assisted bilateral rehabilitation based on sEMG-driven control has been previously addressed in other studies to improve hand mobility; however, low-cost embedded solutions for the real-time bio-cooperative control of robotic rehabilitation platforms are lacking. This paper presents the RobHand (Robot for Hand Rehabilitation) system, which is an exoskeleton that supports EMG-driven assisted bilateral by using a custom-made low-cost EMG real-time embedded solution. A threshold non-pattern recognition EMG-driven control for RobHand has been developed, and it detects hand gestures of the healthy hand and replicates the gesture on the exoskeleton placed on the paretic hand. A preliminary study with ten healthy subjects is conducted to evaluate the performance in reliability, tracking accuracy and response time of the proposed EMG-driven control strategy using the EMG real-time embedded solution, and the findings could be extrapolated to stroke patients. A systematic review has been carried out to compare the results of the study, which present a 97% of overall accuracy for the detection of hand gestures and indicate the adequate time responsiveness of the system. |
doi_str_mv | 10.1109/ACCESS.2021.3118281 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9562297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9562297</ieee_id><doaj_id>oai_doaj_org_article_1d40230ca6d14137b50b45fb044c9d05</doaj_id><sourcerecordid>2581570805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-dda71c8138e0efda68b1cc2289b16779917befe01cc2f9596a2f17004505c2613</originalsourceid><addsrcrecordid>eNpNkcFu1DAURSMEElXbL-jGEusMfnac2OyGNEwrFSHaIpaWY79MPWTi4ngQ8xd8cpOmqvDmWVf3nmfrZtkF0BUAVR_Xdd3c3a0YZbDiAJJJeJOdMChVzgUv3_53f5-dj-OOTkdOkqhOsn-3ob0yg_tE1mSepPkbxl_YYwoD-enTA7lF0-f3fo-k-brJL6P_gwNp9i06h47UYUgx9Cvy_WCG5LujH7YLaINjOkSc8jZsB5_8BLzE3hxH0oVIPvveJIymnwwPpvW9T2b2nGXvOtOPeP4yT7MfX5r7-iq_-ba5rtc3uS2oTLlzpgIrgUuk2DlTyhasZUyqFsqqUgqqFjuks9gpoUrDOqgoLQQVlpXAT7PrheuC2enH6PcmHnUwXj8LIW61icnbHjW4gjJOrSkdFMCrVtC2EF1Li8IqR8XE-rCwHmP4fZj-rXfhEIfp-ZoJCaKi8tnFF5eNYRwjdq9bgeq5Sb00qecm9UuTU-piSXlEfE0oUTKmKv4EQ12ZXA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581570805</pqid></control><display><type>article</type><title>RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cisnal, Ana ; Perez-Turiel, Javier ; Fraile, Juan-Carlos ; Sierra, David ; de la Fuente, Eusebio</creator><creatorcontrib>Cisnal, Ana ; Perez-Turiel, Javier ; Fraile, Juan-Carlos ; Sierra, David ; de la Fuente, Eusebio</creatorcontrib><description>Assisted bilateral rehabilitation has been proven to help patients improve their paretic limb ability and promote motor recovery, especially in upper limbs, after suffering a cerebrovascular accident (ACV). Robotic-assisted bilateral rehabilitation based on sEMG-driven control has been previously addressed in other studies to improve hand mobility; however, low-cost embedded solutions for the real-time bio-cooperative control of robotic rehabilitation platforms are lacking. This paper presents the RobHand (Robot for Hand Rehabilitation) system, which is an exoskeleton that supports EMG-driven assisted bilateral by using a custom-made low-cost EMG real-time embedded solution. A threshold non-pattern recognition EMG-driven control for RobHand has been developed, and it detects hand gestures of the healthy hand and replicates the gesture on the exoskeleton placed on the paretic hand. A preliminary study with ten healthy subjects is conducted to evaluate the performance in reliability, tracking accuracy and response time of the proposed EMG-driven control strategy using the EMG real-time embedded solution, and the findings could be extrapolated to stroke patients. A systematic review has been carried out to compare the results of the study, which present a 97% of overall accuracy for the detection of hand gestures and indicate the adequate time responsiveness of the system.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3118281</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cooperative control ; Electromyography ; embedded software ; Exoskeletons ; Gesture recognition ; Low cost ; Medical treatment ; Pattern recognition ; Real time ; Real-time systems ; Rehabilitation ; rehabilitation robotics ; Rehabilitation robots ; Reliability analysis ; Response time ; Robot control ; Robot sensing systems ; Stroke ; Stroke (medical condition) ; Training</subject><ispartof>IEEE access, 2021, Vol.9, p.137809-137823</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-dda71c8138e0efda68b1cc2289b16779917befe01cc2f9596a2f17004505c2613</citedby><cites>FETCH-LOGICAL-c408t-dda71c8138e0efda68b1cc2289b16779917befe01cc2f9596a2f17004505c2613</cites><orcidid>0000-0002-4860-4781 ; 0000-0002-1556-7179 ; 0000-0002-2877-7300 ; 0000-0002-7731-2411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9562297$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4014,27624,27914,27915,27916,54924</link.rule.ids></links><search><creatorcontrib>Cisnal, Ana</creatorcontrib><creatorcontrib>Perez-Turiel, Javier</creatorcontrib><creatorcontrib>Fraile, Juan-Carlos</creatorcontrib><creatorcontrib>Sierra, David</creatorcontrib><creatorcontrib>de la Fuente, Eusebio</creatorcontrib><title>RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Assisted bilateral rehabilitation has been proven to help patients improve their paretic limb ability and promote motor recovery, especially in upper limbs, after suffering a cerebrovascular accident (ACV). Robotic-assisted bilateral rehabilitation based on sEMG-driven control has been previously addressed in other studies to improve hand mobility; however, low-cost embedded solutions for the real-time bio-cooperative control of robotic rehabilitation platforms are lacking. This paper presents the RobHand (Robot for Hand Rehabilitation) system, which is an exoskeleton that supports EMG-driven assisted bilateral by using a custom-made low-cost EMG real-time embedded solution. A threshold non-pattern recognition EMG-driven control for RobHand has been developed, and it detects hand gestures of the healthy hand and replicates the gesture on the exoskeleton placed on the paretic hand. A preliminary study with ten healthy subjects is conducted to evaluate the performance in reliability, tracking accuracy and response time of the proposed EMG-driven control strategy using the EMG real-time embedded solution, and the findings could be extrapolated to stroke patients. A systematic review has been carried out to compare the results of the study, which present a 97% of overall accuracy for the detection of hand gestures and indicate the adequate time responsiveness of the system.</description><subject>Cooperative control</subject><subject>Electromyography</subject><subject>embedded software</subject><subject>Exoskeletons</subject><subject>Gesture recognition</subject><subject>Low cost</subject><subject>Medical treatment</subject><subject>Pattern recognition</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Rehabilitation</subject><subject>rehabilitation robotics</subject><subject>Rehabilitation robots</subject><subject>Reliability analysis</subject><subject>Response time</subject><subject>Robot control</subject><subject>Robot sensing systems</subject><subject>Stroke</subject><subject>Stroke (medical condition)</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFu1DAURSMEElXbL-jGEusMfnac2OyGNEwrFSHaIpaWY79MPWTi4ngQ8xd8cpOmqvDmWVf3nmfrZtkF0BUAVR_Xdd3c3a0YZbDiAJJJeJOdMChVzgUv3_53f5-dj-OOTkdOkqhOsn-3ob0yg_tE1mSepPkbxl_YYwoD-enTA7lF0-f3fo-k-brJL6P_gwNp9i06h47UYUgx9Cvy_WCG5LujH7YLaINjOkSc8jZsB5_8BLzE3hxH0oVIPvveJIymnwwPpvW9T2b2nGXvOtOPeP4yT7MfX5r7-iq_-ba5rtc3uS2oTLlzpgIrgUuk2DlTyhasZUyqFsqqUgqqFjuks9gpoUrDOqgoLQQVlpXAT7PrheuC2enH6PcmHnUwXj8LIW61icnbHjW4gjJOrSkdFMCrVtC2EF1Li8IqR8XE-rCwHmP4fZj-rXfhEIfp-ZoJCaKi8tnFF5eNYRwjdq9bgeq5Sb00qecm9UuTU-piSXlEfE0oUTKmKv4EQ12ZXA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Cisnal, Ana</creator><creator>Perez-Turiel, Javier</creator><creator>Fraile, Juan-Carlos</creator><creator>Sierra, David</creator><creator>de la Fuente, Eusebio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4860-4781</orcidid><orcidid>https://orcid.org/0000-0002-1556-7179</orcidid><orcidid>https://orcid.org/0000-0002-2877-7300</orcidid><orcidid>https://orcid.org/0000-0002-7731-2411</orcidid></search><sort><creationdate>2021</creationdate><title>RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation</title><author>Cisnal, Ana ; Perez-Turiel, Javier ; Fraile, Juan-Carlos ; Sierra, David ; de la Fuente, Eusebio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-dda71c8138e0efda68b1cc2289b16779917befe01cc2f9596a2f17004505c2613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cooperative control</topic><topic>Electromyography</topic><topic>embedded software</topic><topic>Exoskeletons</topic><topic>Gesture recognition</topic><topic>Low cost</topic><topic>Medical treatment</topic><topic>Pattern recognition</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Rehabilitation</topic><topic>rehabilitation robotics</topic><topic>Rehabilitation robots</topic><topic>Reliability analysis</topic><topic>Response time</topic><topic>Robot control</topic><topic>Robot sensing systems</topic><topic>Stroke</topic><topic>Stroke (medical condition)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cisnal, Ana</creatorcontrib><creatorcontrib>Perez-Turiel, Javier</creatorcontrib><creatorcontrib>Fraile, Juan-Carlos</creatorcontrib><creatorcontrib>Sierra, David</creatorcontrib><creatorcontrib>de la Fuente, Eusebio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cisnal, Ana</au><au>Perez-Turiel, Javier</au><au>Fraile, Juan-Carlos</au><au>Sierra, David</au><au>de la Fuente, Eusebio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>137809</spage><epage>137823</epage><pages>137809-137823</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Assisted bilateral rehabilitation has been proven to help patients improve their paretic limb ability and promote motor recovery, especially in upper limbs, after suffering a cerebrovascular accident (ACV). Robotic-assisted bilateral rehabilitation based on sEMG-driven control has been previously addressed in other studies to improve hand mobility; however, low-cost embedded solutions for the real-time bio-cooperative control of robotic rehabilitation platforms are lacking. This paper presents the RobHand (Robot for Hand Rehabilitation) system, which is an exoskeleton that supports EMG-driven assisted bilateral by using a custom-made low-cost EMG real-time embedded solution. A threshold non-pattern recognition EMG-driven control for RobHand has been developed, and it detects hand gestures of the healthy hand and replicates the gesture on the exoskeleton placed on the paretic hand. A preliminary study with ten healthy subjects is conducted to evaluate the performance in reliability, tracking accuracy and response time of the proposed EMG-driven control strategy using the EMG real-time embedded solution, and the findings could be extrapolated to stroke patients. A systematic review has been carried out to compare the results of the study, which present a 97% of overall accuracy for the detection of hand gestures and indicate the adequate time responsiveness of the system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3118281</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4860-4781</orcidid><orcidid>https://orcid.org/0000-0002-1556-7179</orcidid><orcidid>https://orcid.org/0000-0002-2877-7300</orcidid><orcidid>https://orcid.org/0000-0002-7731-2411</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.137809-137823 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9562297 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Cooperative control Electromyography embedded software Exoskeletons Gesture recognition Low cost Medical treatment Pattern recognition Real time Real-time systems Rehabilitation rehabilitation robotics Rehabilitation robots Reliability analysis Response time Robot control Robot sensing systems Stroke Stroke (medical condition) Training |
title | RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RobHand:%20A%20Hand%20Exoskeleton%20With%20Real-Time%20EMG-Driven%20Embedded%20Control.%20Quantifying%20Hand%20Gesture%20Recognition%20Delays%20for%20Bilateral%20Rehabilitation&rft.jtitle=IEEE%20access&rft.au=Cisnal,%20Ana&rft.date=2021&rft.volume=9&rft.spage=137809&rft.epage=137823&rft.pages=137809-137823&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3118281&rft_dat=%3Cproquest_ieee_%3E2581570805%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581570805&rft_id=info:pmid/&rft_ieee_id=9562297&rft_doaj_id=oai_doaj_org_article_1d40230ca6d14137b50b45fb044c9d05&rfr_iscdi=true |