RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation
Assisted bilateral rehabilitation has been proven to help patients improve their paretic limb ability and promote motor recovery, especially in upper limbs, after suffering a cerebrovascular accident (ACV). Robotic-assisted bilateral rehabilitation based on sEMG-driven control has been previously ad...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.137809-137823 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assisted bilateral rehabilitation has been proven to help patients improve their paretic limb ability and promote motor recovery, especially in upper limbs, after suffering a cerebrovascular accident (ACV). Robotic-assisted bilateral rehabilitation based on sEMG-driven control has been previously addressed in other studies to improve hand mobility; however, low-cost embedded solutions for the real-time bio-cooperative control of robotic rehabilitation platforms are lacking. This paper presents the RobHand (Robot for Hand Rehabilitation) system, which is an exoskeleton that supports EMG-driven assisted bilateral by using a custom-made low-cost EMG real-time embedded solution. A threshold non-pattern recognition EMG-driven control for RobHand has been developed, and it detects hand gestures of the healthy hand and replicates the gesture on the exoskeleton placed on the paretic hand. A preliminary study with ten healthy subjects is conducted to evaluate the performance in reliability, tracking accuracy and response time of the proposed EMG-driven control strategy using the EMG real-time embedded solution, and the findings could be extrapolated to stroke patients. A systematic review has been carried out to compare the results of the study, which present a 97% of overall accuracy for the detection of hand gestures and indicate the adequate time responsiveness of the system. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3118281 |