A 4T/Cell Amplifier-Chain-Based XOR PUF With Strong Machine Learning Attack Resilience

This paper presents an amplifier-chain-based XOR physical unclonable function (AC-XOR PUF), with the process- and/or bias-dependent voltage and amplification information of two identical amplifier chains serving as the entropy sources. The current-biased PUF cell using only 4 NMOS transistors achiev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2022-01, Vol.69 (1), p.366-377
Hauptverfasser: Zhang, Jieyun, Xu, Chongyao, Law, Man-Kay, Jiang, Yang, Zhao, Xiaojin, Mak, Pui-In, Martins, Rui P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an amplifier-chain-based XOR physical unclonable function (AC-XOR PUF), with the process- and/or bias-dependent voltage and amplification information of two identical amplifier chains serving as the entropy sources. The current-biased PUF cell using only 4 NMOS transistors achieves a small area with reduced temperature and supply sensitivity. Optimization on both the stage gain and stage number can reduce the input-referred noise (IRN) and improve the PUF reliability. We further employ an XOR gate to process the amplifier-chain outputs for the final response to improve the energy efficiency and uniqueness. The process- and bias-dependent stage amplification and the nonlinear amplifier-chain multiplication, which can significantly increase the number of modeling parameters and introduce a complex decision boundary respectively, can effectively resist machine learning (ML) modeling attacks. Fabricated in standard 65nm CMOS, the proposed AC-XOR PUF occupies an active area of 6845\mu \text{m}^{2} . Without discarding any challenge-response pairs (CRPs), this work features a measured worst case bit error rate (BER) of 5.70% across 1.06\sim 1.55V and - 30\sim 125^{\circ }\text{C} , while demonstrating a reliability (intra-die HD) and uniqueness (inter-die HD) of 0.58% and 49.92%, respectively. It also achieves a ML prediction accuracy of 50.72% using 80\times 80\times 80 artificial neural network (ANN) with 1M CPRs as training set.
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2021.3114084