Compact Formulation for the Bias Dependent Quasi-Static Mobile Charge in Schottky-Barrier CNTFETs
Carbon nanotube (CNT) field-effect transistors (FETs) are promising candidates for future high-frequency (HF) system-on-chip applications. Understanding and modeling mobile charge storage on CNTs is therefore essential for device optimization and circuit design. A physics-based compact analytical fo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2021, Vol.20, p.754-760 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carbon nanotube (CNT) field-effect transistors (FETs) are promising candidates for future high-frequency (HF) system-on-chip applications. Understanding and modeling mobile charge storage on CNTs is therefore essential for device optimization and circuit design. A physics-based compact analytical formulation is presented that enables an accurate approximation of the mobile charge in Schottky-barrier CNTFETs over the practically relevant bias range for HF circuit design. The formulation is C ∞ continuous and yields accurate results also for the capacitances. The new formulation has been verified for both ballistic and scattering dominated carrier transport by employing device simulation, which was calibrated to experimental data from multi-tube CNTFETs |
---|---|
ISSN: | 1536-125X 1941-0085 |
DOI: | 10.1109/TNANO.2021.3116694 |