Contrastive Information Extraction With Generative Transformer

Information extraction tasks such as entity relation extraction and event extraction are of great importance for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end information extraction task for sequence generation. Since generative information ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2021, Vol.29, p.3077-3088
Hauptverfasser: Zhang, Ningyu, Ye, Hongbin, Deng, Shumin, Tan, Chuanqi, Chen, Mosha, Huang, Songfang, Huang, Fei, Chen, Huajun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Information extraction tasks such as entity relation extraction and event extraction are of great importance for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end information extraction task for sequence generation. Since generative information extraction may struggle to capture long-term dependencies and generate unfaithful triples, we introduce a novel model, contrastive information extraction with a generative transformer. Specifically, we introduce a single shared transformer module for an encoder-decoder-based generation. To generate faithful results, we propose a novel triplet contrastive training object. Moreover, we introduce two mechanisms to further improve model performance (i.e., batch-wise dynamic attention-masking and triple-wise calibration). Experimental results on five datasets (i.e., NYT, WebNLG, MIE, ACE-2005, and MUC-4) show that our approach achieves better performance than baselines. 1
ISSN:2329-9290
2329-9304
DOI:10.1109/TASLP.2021.3110126