Modeling superscalar processors via statistical simulation
Statistical simulation is a technique for fast performance evaluation of superscalar processors. First, intrinsic statistical information is collected from a single detailed simulation of a program. This information is then used to generate a synthetic instruction trace that is fed to a simple proce...
Gespeichert in:
Veröffentlicht in: | Proceedings 2001 International Conference on Parallel Architectures and Compilation Techniques 2001, p.15-24 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Statistical simulation is a technique for fast performance evaluation of superscalar processors. First, intrinsic statistical information is collected from a single detailed simulation of a program. This information is then used to generate a synthetic instruction trace that is fed to a simple processor model, along with cache and branch prediction statistics. Because of the probabilistic nature of the simulation, it quickly converges to a performance rate. The simplicity and simulation speed make it useful for fast design space exploration; as such, it is a good complement to conventional detailed simulation. The accuracy of this technique is evaluated for different levels of modeling complexity. Both errors and convergence properties are studied in detail. A simple instruction model yields an average error of 8% compared with detailed simulation. A more detailed instruction model reduces the error to 5% but requires about three times as long to converge. |
---|---|
ISSN: | 1089-796X 1089-795X |
DOI: | 10.1109/PACT.2001.953284 |