Deep Learning to Optimize: Security-Constrained Unit Commitment With Uncertain Wind Power Generation and BESSs

This paper proposes a new model of scenario-based security-constrained unit commitment (SCUC) with BESSs. By formulating such a model as a mixed-integer programming (MIP) problem, we can obtain the optimal control strategy of units and BESSs to reduce the operating cost. To solve this MIP with the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable energy 2022-01, Vol.13 (1), p.231-240
Hauptverfasser: Wu, Tong, Angela Zhang, Ying-Jun, Wang, Shuoyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a new model of scenario-based security-constrained unit commitment (SCUC) with BESSs. By formulating such a model as a mixed-integer programming (MIP) problem, we can obtain the optimal control strategy of units and BESSs to reduce the operating cost. To solve this MIP with the proposed model, we propose a new learning-based approach to tackle the SCUC problem. The proposed convolutional neural network (CNN)-based SCUC algorithm (CNN-SCUC) has two main stages. First, CNN-SCUC trains a CNN to obtain solutions to the binary variables corresponding to unit commitment decisions. Then, the continuous variables corresponding to unit power outputs are solved by a small-scale convex optimization problem. In contrast to existing work, CNN-SCUC eliminates the need of explicitly considering the scenario-based security constraints in the optimization problem, and thus greatly reduces the computational complexity. The average gap to the optimal solution is as small as 0.0267%. The algorithm is also scalable in the sense that the computational time is reduced from about 1236.32 seconds to 0.8379 seconds in a 10-unit and 200-scenario system. Besides, the computation time remains almost constant when the number of scenarios increases. Case studies show that compared with the traditional scenario-based SCUC model, more than 4.70% operating cost reduction is achieved by incorporating BESSs in the system.
ISSN:1949-3029
1949-3037
DOI:10.1109/TSTE.2021.3107848