Vector Gaussian Successive Refinement With Degraded Side Information

We investigate the problem of the successive refinement for Wyner-Ziv coding with degraded side information and obtain a complete characterization of the rate region for the quadratic vector Gaussian case. The achievability part is based on the evaluation of the Tian-Diggavi inner bound that involve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2021-11, Vol.67 (11), p.6963-6982
Hauptverfasser: Xu, Yinfei, Guang, Xuan, Lu, Jian, Chen, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the problem of the successive refinement for Wyner-Ziv coding with degraded side information and obtain a complete characterization of the rate region for the quadratic vector Gaussian case. The achievability part is based on the evaluation of the Tian-Diggavi inner bound that involves Gaussian auxiliary random vectors. For the converse part, a matching outer bound is obtained with the aid of a new extremal inequality. Herein, the proof of this extremal inequality depends on the integration of the monotone path argument and the doubling trick as well as information-estimation relations.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2021.3107215