A 1-norm quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric linear systems
Due to the sheer size of sparse systems of linear equations arising from real-world applications in science and engineering, parallel computing as well as iterative methods are almost mandatory. For the iterative solution of large sparse nonsymmetric linear systems, a 1-norm quasi-minimal residual v...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the sheer size of sparse systems of linear equations arising from real-world applications in science and engineering, parallel computing as well as iterative methods are almost mandatory. For the iterative solution of large sparse nonsymmetric linear systems, a 1-norm quasi-minimal residual variant of the biconjugate gradient stabilized method (Bi-CGSTAB) is proposed. The algorithm is inspired by a recent transpose-free 1-norm quasi-minimal residual method (TFQMR/sub 1/) in that it applies the 1-norm quasi-minimal residual approach to Bi-CGSTAB in the same way as TFQMR/sub 1/ is derived from the conjugate gradient squared method (CGS). There is also an intimate connection to a method called QMRCGSTAB that is based on applying the (Euclidean norm) quasi-minimal residual approach to Bi-CGSTAB. Numerical examples are used to compare the convergence behavior of Bi-CGSTAB and its 1-norm quasi-minimal residual variant. |
---|---|
ISSN: | 1530-2016 2375-530X |
DOI: | 10.1109/ICPPW.2001.951918 |