On the Sum of Extended η-μ Variates With MRC Applications

In this letter, the sum of L independent but not necessarily identically distributed (i.n.i.d.) extended \eta - \mu variates is considered. In particular, novel expressions for the probability density function and cumulative distribution function are derived in closed-forms. The derived expressi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2021-11, Vol.25 (11), p.3518-3522
Hauptverfasser: Badarneh, Osamah S., Almehmadi, Fares S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3522
container_issue 11
container_start_page 3518
container_title IEEE communications letters
container_volume 25
creator Badarneh, Osamah S.
Almehmadi, Fares S.
description In this letter, the sum of L independent but not necessarily identically distributed (i.n.i.d.) extended \eta - \mu variates is considered. In particular, novel expressions for the probability density function and cumulative distribution function are derived in closed-forms. The derived expressions are represented in two different forms, i.e., in terms of confluent multivariate hypergeometric function and general Fox's H-function. Subsequently, closed-form expressions for the outage probability and average symbol error rate are derived. Our analytical results are validated by some numerical and Monte-Carlo simulation results.
doi_str_mv 10.1109/LCOMM.2021.3105923
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9516006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9516006</ieee_id><sourcerecordid>2595718633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-2adc19c8573fdc22d2b12f26cb2ae5bbe0a782db45a04cddded89c75a2cf0c8a3</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWKsvoJuA66nJSTOT4KoM9QItBa_LkEkydEo7MyYZ0Cdz4zP0mZza4uacs_i_88OH0CUlI0qJvJnli_l8BAToiFHCJbAjNKCciwT6cdzfRMgky6Q4RWchrAghAjgdoNtFjePS4edug5sSTz-jq62zePudbH_wm_aVji7g9you8fwpx5O2XVdGx6qpwzk6KfU6uIvDHqLXu-lL_pDMFveP-WSWGMZkTEBbQ6URPGOlNQAWCgolpKYA7XhROKIzAbYYc03Gxtq-XkiTcQ2mJEZoNkTX-7-tbz46F6JaNZ2v-0oFXPKMipSxPgX7lPFNCN6VqvXVRvsvRYnaSVJ_ktROkjpI6qGrPVQ55_4ByWlKSMp-AfK9Y90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595718633</pqid></control><display><type>article</type><title>On the Sum of Extended η-μ Variates With MRC Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Badarneh, Osamah S. ; Almehmadi, Fares S.</creator><creatorcontrib>Badarneh, Osamah S. ; Almehmadi, Fares S.</creatorcontrib><description><![CDATA[In this letter, the sum of <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> independent but not necessarily identically distributed (i.n.i.d.) extended <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> variates is considered. In particular, novel expressions for the probability density function and cumulative distribution function are derived in closed-forms. The derived expressions are represented in two different forms, i.e., in terms of confluent multivariate hypergeometric function and general Fox's H-function. Subsequently, closed-form expressions for the outage probability and average symbol error rate are derived. Our analytical results are validated by some numerical and Monte-Carlo simulation results.]]></description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2021.3105923</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Distribution functions ; Electrical engineering ; Error analysis ; Extended η-μ distribution ; Fading channels ; Hypergeometric functions ; maximal-ratio combining ; Power system reliability ; Probability ; Probability density function ; Probability density functions ; Signal to noise ratio ; sum of random variables</subject><ispartof>IEEE communications letters, 2021-11, Vol.25 (11), p.3518-3522</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-2adc19c8573fdc22d2b12f26cb2ae5bbe0a782db45a04cddded89c75a2cf0c8a3</citedby><cites>FETCH-LOGICAL-c339t-2adc19c8573fdc22d2b12f26cb2ae5bbe0a782db45a04cddded89c75a2cf0c8a3</cites><orcidid>0000-0002-2792-9712 ; 0000-0002-2540-3143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9516006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9516006$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badarneh, Osamah S.</creatorcontrib><creatorcontrib>Almehmadi, Fares S.</creatorcontrib><title>On the Sum of Extended η-μ Variates With MRC Applications</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description><![CDATA[In this letter, the sum of <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> independent but not necessarily identically distributed (i.n.i.d.) extended <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> variates is considered. In particular, novel expressions for the probability density function and cumulative distribution function are derived in closed-forms. The derived expressions are represented in two different forms, i.e., in terms of confluent multivariate hypergeometric function and general Fox's H-function. Subsequently, closed-form expressions for the outage probability and average symbol error rate are derived. Our analytical results are validated by some numerical and Monte-Carlo simulation results.]]></description><subject>Distribution functions</subject><subject>Electrical engineering</subject><subject>Error analysis</subject><subject>Extended η-μ distribution</subject><subject>Fading channels</subject><subject>Hypergeometric functions</subject><subject>maximal-ratio combining</subject><subject>Power system reliability</subject><subject>Probability</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Signal to noise ratio</subject><subject>sum of random variables</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtKAzEUhoMoWKsvoJuA66nJSTOT4KoM9QItBa_LkEkydEo7MyYZ0Cdz4zP0mZza4uacs_i_88OH0CUlI0qJvJnli_l8BAToiFHCJbAjNKCciwT6cdzfRMgky6Q4RWchrAghAjgdoNtFjePS4edug5sSTz-jq62zePudbH_wm_aVji7g9you8fwpx5O2XVdGx6qpwzk6KfU6uIvDHqLXu-lL_pDMFveP-WSWGMZkTEBbQ6URPGOlNQAWCgolpKYA7XhROKIzAbYYc03Gxtq-XkiTcQ2mJEZoNkTX-7-tbz46F6JaNZ2v-0oFXPKMipSxPgX7lPFNCN6VqvXVRvsvRYnaSVJ_ktROkjpI6qGrPVQ55_4ByWlKSMp-AfK9Y90</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Badarneh, Osamah S.</creator><creator>Almehmadi, Fares S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2792-9712</orcidid><orcidid>https://orcid.org/0000-0002-2540-3143</orcidid></search><sort><creationdate>20211101</creationdate><title>On the Sum of Extended η-μ Variates With MRC Applications</title><author>Badarneh, Osamah S. ; Almehmadi, Fares S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-2adc19c8573fdc22d2b12f26cb2ae5bbe0a782db45a04cddded89c75a2cf0c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Distribution functions</topic><topic>Electrical engineering</topic><topic>Error analysis</topic><topic>Extended η-μ distribution</topic><topic>Fading channels</topic><topic>Hypergeometric functions</topic><topic>maximal-ratio combining</topic><topic>Power system reliability</topic><topic>Probability</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Signal to noise ratio</topic><topic>sum of random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badarneh, Osamah S.</creatorcontrib><creatorcontrib>Almehmadi, Fares S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badarneh, Osamah S.</au><au>Almehmadi, Fares S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Sum of Extended η-μ Variates With MRC Applications</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>25</volume><issue>11</issue><spage>3518</spage><epage>3522</epage><pages>3518-3522</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract><![CDATA[In this letter, the sum of <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> independent but not necessarily identically distributed (i.n.i.d.) extended <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> variates is considered. In particular, novel expressions for the probability density function and cumulative distribution function are derived in closed-forms. The derived expressions are represented in two different forms, i.e., in terms of confluent multivariate hypergeometric function and general Fox's H-function. Subsequently, closed-form expressions for the outage probability and average symbol error rate are derived. Our analytical results are validated by some numerical and Monte-Carlo simulation results.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2021.3105923</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2792-9712</orcidid><orcidid>https://orcid.org/0000-0002-2540-3143</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2021-11, Vol.25 (11), p.3518-3522
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_9516006
source IEEE Electronic Library (IEL)
subjects Distribution functions
Electrical engineering
Error analysis
Extended η-μ distribution
Fading channels
Hypergeometric functions
maximal-ratio combining
Power system reliability
Probability
Probability density function
Probability density functions
Signal to noise ratio
sum of random variables
title On the Sum of Extended η-μ Variates With MRC Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A50%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Sum%20of%20Extended%20%CE%B7-%CE%BC%20Variates%20With%20MRC%20Applications&rft.jtitle=IEEE%20communications%20letters&rft.au=Badarneh,%20Osamah%20S.&rft.date=2021-11-01&rft.volume=25&rft.issue=11&rft.spage=3518&rft.epage=3522&rft.pages=3518-3522&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2021.3105923&rft_dat=%3Cproquest_RIE%3E2595718633%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595718633&rft_id=info:pmid/&rft_ieee_id=9516006&rfr_iscdi=true