On the Sum of Extended η-μ Variates With MRC Applications

In this letter, the sum of L independent but not necessarily identically distributed (i.n.i.d.) extended \eta - \mu variates is considered. In particular, novel expressions for the probability density function and cumulative distribution function are derived in closed-forms. The derived expressi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2021-11, Vol.25 (11), p.3518-3522
Hauptverfasser: Badarneh, Osamah S., Almehmadi, Fares S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, the sum of L independent but not necessarily identically distributed (i.n.i.d.) extended \eta - \mu variates is considered. In particular, novel expressions for the probability density function and cumulative distribution function are derived in closed-forms. The derived expressions are represented in two different forms, i.e., in terms of confluent multivariate hypergeometric function and general Fox's H-function. Subsequently, closed-form expressions for the outage probability and average symbol error rate are derived. Our analytical results are validated by some numerical and Monte-Carlo simulation results.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2021.3105923