Discrete-Time Causal Control of a Wave Energy Converter With Finite Stroke in Stochastic Waves
We consider feedback control design for a wave energy converter (WEC) for which the power takeoff (PTO) system has a finite stroke limit. Stationary stochastic wave loading is assumed, with a known spectrum, and the plant dynamics are assumed to be linear. We develop a technique for the design of a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2022-05, Vol.30 (3), p.1198-1214 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider feedback control design for a wave energy converter (WEC) for which the power takeoff (PTO) system has a finite stroke limit. Stationary stochastic wave loading is assumed, with a known spectrum, and the plant dynamics are assumed to be linear. We develop a technique for the design of a discrete-time controller, which has three design stages. In the first stage, a linear controller is optimized while imposing a relaxation of the maximum stroke constraint on the design. In the second stage, a tandem nonlinear feedback loop is designed for the purpose of stroke protection. In the third stage, the two designs (linear and nonlinear) are fused in a manner that preserves the stability of the overall system. The technique is demonstrated in a simulation of a simple cylindrical buoy. We show that the controller may be tuned through the adjustment of scalar design parameters, which adjust the tradeoff between the mean generated power and the force levels required to protect the stroke. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2021.3100463 |