Gearbox Fault Diagnosis Using Multiscale Sparse Frequency-Frequency Distributions
Gear fault related information is distributed over a broad frequency band, indicating a complex modulation mechanism. It is difficult to detect early-stage gear faults accurately by detecting fault frequencies in a limited frequency band. This paper proposes a novel method for achieving fault freque...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.113089-113099 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gear fault related information is distributed over a broad frequency band, indicating a complex modulation mechanism. It is difficult to detect early-stage gear faults accurately by detecting fault frequencies in a limited frequency band. This paper proposes a novel method for achieving fault frequency detection more effectively. A short-frequency Fourier transform with a series of frequency-window functions is initially used to obtain the overall frequency information of a vibration signal. Subsequently, based on sparse decomposition and orthogonal matching pursuit, harmonic atoms are applied to refine modulation components from multiscale pseudo mono-components. A multiscale-sparse frequency-frequency distribution is eventually applied to augment existing fault-related harmonic components. In addition, a synthesized sparse spectrum is acquired by determining the frequency-frequency ridge from the multiscale sparse frequency-frequency distribution. Compared with empirical-mode-decomposition and fast-kurtogram analyses, the effectiveness and superiority of the proposed method for gear fault detection have been verified via experiments. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3104281 |