Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection
Automated water body detection from satellite imagery is a fundamental stage for urban hydrological studies. In recent years, various deep convolutional neural network (DCNN)-based methods have been proposed to segment remote sensing data collected by conventional RGB or multispectral imagery for su...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.7422-7434 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7434 |
---|---|
container_issue | |
container_start_page | 7422 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 14 |
creator | Yuan, Kunhao Zhuang, Xu Schaefer, Gerald Feng, Jianxin Guan, Lin Fang, Hui |
description | Automated water body detection from satellite imagery is a fundamental stage for urban hydrological studies. In recent years, various deep convolutional neural network (DCNN)-based methods have been proposed to segment remote sensing data collected by conventional RGB or multispectral imagery for such studies. However, how to effectively explore the wider spectrum bands of multispectral sensors to achieve significantly better performance compared to the use of only RGB bands has been left underexplored. In this article, we propose a novel DCNN model-multichannel water body detection network (MC-WBDN)-that incorporates three innovative components, i.e., a multichannel fusion module, an Enhanced Atrous Spatial Pyramid Pooling module, and Space-to-Depth/Depth-to-Space operations, to outperform state-of-the-art DCNN-based water body detection methods. Experimental results convincingly show that our MC-WBDN model achieves remarkable water body detection performance, is more robust to light and weather variations, and can better distinguish tiny water bodies compared to other DCNN models. |
doi_str_mv | 10.1109/JSTARS.2021.3098678 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9492784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9492784</ieee_id><doaj_id>oai_doaj_org_article_4c3e0092164f4ea69125ecb675b57c96</doaj_id><sourcerecordid>2557979090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-98c3eef7c8faee49d85008f5cff8c67c539765ee9af9c21982d4374086232b2e3</originalsourceid><addsrcrecordid>eNo9kUtrIzEQhMWSwDrJ_oJcBvY8jt5SH_NeB4eFOCFHIWtaZsx45Gjkg__9TnZCTg3d9VU1FCGXjM4Zo3D1tHq9flnNOeVsLihYbewPMuNMsZopoU7IjIGAmkkqf5KzYdhSqrkBMSPvd4j7eok-922_qW_8gE31fOhKO-wxlOy7auULdl1bsFrs_AarFW522Bdf2tRXMeXqfRTk6iY1x-oOy0iNhwtyGn034K-veU7eHu5fb__Uy7-Pi9vrZR2kkaUGGwRiNMFGjyihsYpSG1WI0QZtghJgtEIEHyFwBpY3UhhJreaCrzmKc7KYfJvkt26f253PR5d86_4vUt44n0sbOnRyjKIUONMySvQaGFcY1tqotTIB9Oj1e_La5_RxwKG4bTrkfnzfcaUMGKBAR5WYVCGnYcgYv1MZdZ9tuKkN99mG-2pjpC4nqkXEbwIkcGOl-Aet2oXk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557979090</pqid></control><display><type>article</type><title>Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yuan, Kunhao ; Zhuang, Xu ; Schaefer, Gerald ; Feng, Jianxin ; Guan, Lin ; Fang, Hui</creator><creatorcontrib>Yuan, Kunhao ; Zhuang, Xu ; Schaefer, Gerald ; Feng, Jianxin ; Guan, Lin ; Fang, Hui</creatorcontrib><description>Automated water body detection from satellite imagery is a fundamental stage for urban hydrological studies. In recent years, various deep convolutional neural network (DCNN)-based methods have been proposed to segment remote sensing data collected by conventional RGB or multispectral imagery for such studies. However, how to effectively explore the wider spectrum bands of multispectral sensors to achieve significantly better performance compared to the use of only RGB bands has been left underexplored. In this article, we propose a novel DCNN model-multichannel water body detection network (MC-WBDN)-that incorporates three innovative components, i.e., a multichannel fusion module, an Enhanced Atrous Spatial Pyramid Pooling module, and Space-to-Depth/Depth-to-Space operations, to outperform state-of-the-art DCNN-based water body detection methods. Experimental results convincingly show that our MC-WBDN model achieves remarkable water body detection performance, is more robust to light and weather variations, and can better distinguish tiny water bodies compared to other DCNN models.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3098678</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Deep convolutional neural networks (DCNNs) ; Detection ; Feature extraction ; feature fusion ; Hydrology ; Image processing ; Image segmentation ; Imagery ; Indexes ; Methods ; Modules ; multispectral remote sensing ; Neural networks ; Remote sensing ; Satellite imagery ; Satellites ; semantic segmentation ; Spaceborne remote sensing ; Urban areas ; Vegetation mapping ; Water bodies ; water body detection ; Water depth</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.7422-7434</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-98c3eef7c8faee49d85008f5cff8c67c539765ee9af9c21982d4374086232b2e3</citedby><cites>FETCH-LOGICAL-c474t-98c3eef7c8faee49d85008f5cff8c67c539765ee9af9c21982d4374086232b2e3</cites><orcidid>0000-0002-9877-0219 ; 0000-0001-9365-7420 ; 0000-0002-3780-6863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Yuan, Kunhao</creatorcontrib><creatorcontrib>Zhuang, Xu</creatorcontrib><creatorcontrib>Schaefer, Gerald</creatorcontrib><creatorcontrib>Feng, Jianxin</creatorcontrib><creatorcontrib>Guan, Lin</creatorcontrib><creatorcontrib>Fang, Hui</creatorcontrib><title>Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Automated water body detection from satellite imagery is a fundamental stage for urban hydrological studies. In recent years, various deep convolutional neural network (DCNN)-based methods have been proposed to segment remote sensing data collected by conventional RGB or multispectral imagery for such studies. However, how to effectively explore the wider spectrum bands of multispectral sensors to achieve significantly better performance compared to the use of only RGB bands has been left underexplored. In this article, we propose a novel DCNN model-multichannel water body detection network (MC-WBDN)-that incorporates three innovative components, i.e., a multichannel fusion module, an Enhanced Atrous Spatial Pyramid Pooling module, and Space-to-Depth/Depth-to-Space operations, to outperform state-of-the-art DCNN-based water body detection methods. Experimental results convincingly show that our MC-WBDN model achieves remarkable water body detection performance, is more robust to light and weather variations, and can better distinguish tiny water bodies compared to other DCNN models.</description><subject>Artificial neural networks</subject><subject>Deep convolutional neural networks (DCNNs)</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Hydrology</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imagery</subject><subject>Indexes</subject><subject>Methods</subject><subject>Modules</subject><subject>multispectral remote sensing</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>semantic segmentation</subject><subject>Spaceborne remote sensing</subject><subject>Urban areas</subject><subject>Vegetation mapping</subject><subject>Water bodies</subject><subject>water body detection</subject><subject>Water depth</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kUtrIzEQhMWSwDrJ_oJcBvY8jt5SH_NeB4eFOCFHIWtaZsx45Gjkg__9TnZCTg3d9VU1FCGXjM4Zo3D1tHq9flnNOeVsLihYbewPMuNMsZopoU7IjIGAmkkqf5KzYdhSqrkBMSPvd4j7eok-922_qW_8gE31fOhKO-wxlOy7auULdl1bsFrs_AarFW522Bdf2tRXMeXqfRTk6iY1x-oOy0iNhwtyGn034K-veU7eHu5fb__Uy7-Pi9vrZR2kkaUGGwRiNMFGjyihsYpSG1WI0QZtghJgtEIEHyFwBpY3UhhJreaCrzmKc7KYfJvkt26f253PR5d86_4vUt44n0sbOnRyjKIUONMySvQaGFcY1tqotTIB9Oj1e_La5_RxwKG4bTrkfnzfcaUMGKBAR5WYVCGnYcgYv1MZdZ9tuKkN99mG-2pjpC4nqkXEbwIkcGOl-Aet2oXk</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yuan, Kunhao</creator><creator>Zhuang, Xu</creator><creator>Schaefer, Gerald</creator><creator>Feng, Jianxin</creator><creator>Guan, Lin</creator><creator>Fang, Hui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9877-0219</orcidid><orcidid>https://orcid.org/0000-0001-9365-7420</orcidid><orcidid>https://orcid.org/0000-0002-3780-6863</orcidid></search><sort><creationdate>2021</creationdate><title>Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection</title><author>Yuan, Kunhao ; Zhuang, Xu ; Schaefer, Gerald ; Feng, Jianxin ; Guan, Lin ; Fang, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-98c3eef7c8faee49d85008f5cff8c67c539765ee9af9c21982d4374086232b2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Deep convolutional neural networks (DCNNs)</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Hydrology</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imagery</topic><topic>Indexes</topic><topic>Methods</topic><topic>Modules</topic><topic>multispectral remote sensing</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>semantic segmentation</topic><topic>Spaceborne remote sensing</topic><topic>Urban areas</topic><topic>Vegetation mapping</topic><topic>Water bodies</topic><topic>water body detection</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Kunhao</creatorcontrib><creatorcontrib>Zhuang, Xu</creatorcontrib><creatorcontrib>Schaefer, Gerald</creatorcontrib><creatorcontrib>Feng, Jianxin</creatorcontrib><creatorcontrib>Guan, Lin</creatorcontrib><creatorcontrib>Fang, Hui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Kunhao</au><au>Zhuang, Xu</au><au>Schaefer, Gerald</au><au>Feng, Jianxin</au><au>Guan, Lin</au><au>Fang, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>7422</spage><epage>7434</epage><pages>7422-7434</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Automated water body detection from satellite imagery is a fundamental stage for urban hydrological studies. In recent years, various deep convolutional neural network (DCNN)-based methods have been proposed to segment remote sensing data collected by conventional RGB or multispectral imagery for such studies. However, how to effectively explore the wider spectrum bands of multispectral sensors to achieve significantly better performance compared to the use of only RGB bands has been left underexplored. In this article, we propose a novel DCNN model-multichannel water body detection network (MC-WBDN)-that incorporates three innovative components, i.e., a multichannel fusion module, an Enhanced Atrous Spatial Pyramid Pooling module, and Space-to-Depth/Depth-to-Space operations, to outperform state-of-the-art DCNN-based water body detection methods. Experimental results convincingly show that our MC-WBDN model achieves remarkable water body detection performance, is more robust to light and weather variations, and can better distinguish tiny water bodies compared to other DCNN models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3098678</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9877-0219</orcidid><orcidid>https://orcid.org/0000-0001-9365-7420</orcidid><orcidid>https://orcid.org/0000-0002-3780-6863</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.7422-7434 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_ieee_primary_9492784 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Deep convolutional neural networks (DCNNs) Detection Feature extraction feature fusion Hydrology Image processing Image segmentation Imagery Indexes Methods Modules multispectral remote sensing Neural networks Remote sensing Satellite imagery Satellites semantic segmentation Spaceborne remote sensing Urban areas Vegetation mapping Water bodies water body detection Water depth |
title | Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-Learning-Based%20Multispectral%20Satellite%20Image%20Segmentation%20for%20Water%20Body%20Detection&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Yuan,%20Kunhao&rft.date=2021&rft.volume=14&rft.spage=7422&rft.epage=7434&rft.pages=7422-7434&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3098678&rft_dat=%3Cproquest_ieee_%3E2557979090%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557979090&rft_id=info:pmid/&rft_ieee_id=9492784&rft_doaj_id=oai_doaj_org_article_4c3e0092164f4ea69125ecb675b57c96&rfr_iscdi=true |