Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection

Automated water body detection from satellite imagery is a fundamental stage for urban hydrological studies. In recent years, various deep convolutional neural network (DCNN)-based methods have been proposed to segment remote sensing data collected by conventional RGB or multispectral imagery for su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.7422-7434
Hauptverfasser: Yuan, Kunhao, Zhuang, Xu, Schaefer, Gerald, Feng, Jianxin, Guan, Lin, Fang, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7434
container_issue
container_start_page 7422
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 14
creator Yuan, Kunhao
Zhuang, Xu
Schaefer, Gerald
Feng, Jianxin
Guan, Lin
Fang, Hui
description Automated water body detection from satellite imagery is a fundamental stage for urban hydrological studies. In recent years, various deep convolutional neural network (DCNN)-based methods have been proposed to segment remote sensing data collected by conventional RGB or multispectral imagery for such studies. However, how to effectively explore the wider spectrum bands of multispectral sensors to achieve significantly better performance compared to the use of only RGB bands has been left underexplored. In this article, we propose a novel DCNN model-multichannel water body detection network (MC-WBDN)-that incorporates three innovative components, i.e., a multichannel fusion module, an Enhanced Atrous Spatial Pyramid Pooling module, and Space-to-Depth/Depth-to-Space operations, to outperform state-of-the-art DCNN-based water body detection methods. Experimental results convincingly show that our MC-WBDN model achieves remarkable water body detection performance, is more robust to light and weather variations, and can better distinguish tiny water bodies compared to other DCNN models.
doi_str_mv 10.1109/JSTARS.2021.3098678
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9492784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9492784</ieee_id><doaj_id>oai_doaj_org_article_4c3e0092164f4ea69125ecb675b57c96</doaj_id><sourcerecordid>2557979090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-98c3eef7c8faee49d85008f5cff8c67c539765ee9af9c21982d4374086232b2e3</originalsourceid><addsrcrecordid>eNo9kUtrIzEQhMWSwDrJ_oJcBvY8jt5SH_NeB4eFOCFHIWtaZsx45Gjkg__9TnZCTg3d9VU1FCGXjM4Zo3D1tHq9flnNOeVsLihYbewPMuNMsZopoU7IjIGAmkkqf5KzYdhSqrkBMSPvd4j7eok-922_qW_8gE31fOhKO-wxlOy7auULdl1bsFrs_AarFW522Bdf2tRXMeXqfRTk6iY1x-oOy0iNhwtyGn034K-veU7eHu5fb__Uy7-Pi9vrZR2kkaUGGwRiNMFGjyihsYpSG1WI0QZtghJgtEIEHyFwBpY3UhhJreaCrzmKc7KYfJvkt26f253PR5d86_4vUt44n0sbOnRyjKIUONMySvQaGFcY1tqotTIB9Oj1e_La5_RxwKG4bTrkfnzfcaUMGKBAR5WYVCGnYcgYv1MZdZ9tuKkN99mG-2pjpC4nqkXEbwIkcGOl-Aet2oXk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557979090</pqid></control><display><type>article</type><title>Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yuan, Kunhao ; Zhuang, Xu ; Schaefer, Gerald ; Feng, Jianxin ; Guan, Lin ; Fang, Hui</creator><creatorcontrib>Yuan, Kunhao ; Zhuang, Xu ; Schaefer, Gerald ; Feng, Jianxin ; Guan, Lin ; Fang, Hui</creatorcontrib><description>Automated water body detection from satellite imagery is a fundamental stage for urban hydrological studies. In recent years, various deep convolutional neural network (DCNN)-based methods have been proposed to segment remote sensing data collected by conventional RGB or multispectral imagery for such studies. However, how to effectively explore the wider spectrum bands of multispectral sensors to achieve significantly better performance compared to the use of only RGB bands has been left underexplored. In this article, we propose a novel DCNN model-multichannel water body detection network (MC-WBDN)-that incorporates three innovative components, i.e., a multichannel fusion module, an Enhanced Atrous Spatial Pyramid Pooling module, and Space-to-Depth/Depth-to-Space operations, to outperform state-of-the-art DCNN-based water body detection methods. Experimental results convincingly show that our MC-WBDN model achieves remarkable water body detection performance, is more robust to light and weather variations, and can better distinguish tiny water bodies compared to other DCNN models.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3098678</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Deep convolutional neural networks (DCNNs) ; Detection ; Feature extraction ; feature fusion ; Hydrology ; Image processing ; Image segmentation ; Imagery ; Indexes ; Methods ; Modules ; multispectral remote sensing ; Neural networks ; Remote sensing ; Satellite imagery ; Satellites ; semantic segmentation ; Spaceborne remote sensing ; Urban areas ; Vegetation mapping ; Water bodies ; water body detection ; Water depth</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.7422-7434</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-98c3eef7c8faee49d85008f5cff8c67c539765ee9af9c21982d4374086232b2e3</citedby><cites>FETCH-LOGICAL-c474t-98c3eef7c8faee49d85008f5cff8c67c539765ee9af9c21982d4374086232b2e3</cites><orcidid>0000-0002-9877-0219 ; 0000-0001-9365-7420 ; 0000-0002-3780-6863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Yuan, Kunhao</creatorcontrib><creatorcontrib>Zhuang, Xu</creatorcontrib><creatorcontrib>Schaefer, Gerald</creatorcontrib><creatorcontrib>Feng, Jianxin</creatorcontrib><creatorcontrib>Guan, Lin</creatorcontrib><creatorcontrib>Fang, Hui</creatorcontrib><title>Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Automated water body detection from satellite imagery is a fundamental stage for urban hydrological studies. In recent years, various deep convolutional neural network (DCNN)-based methods have been proposed to segment remote sensing data collected by conventional RGB or multispectral imagery for such studies. However, how to effectively explore the wider spectrum bands of multispectral sensors to achieve significantly better performance compared to the use of only RGB bands has been left underexplored. In this article, we propose a novel DCNN model-multichannel water body detection network (MC-WBDN)-that incorporates three innovative components, i.e., a multichannel fusion module, an Enhanced Atrous Spatial Pyramid Pooling module, and Space-to-Depth/Depth-to-Space operations, to outperform state-of-the-art DCNN-based water body detection methods. Experimental results convincingly show that our MC-WBDN model achieves remarkable water body detection performance, is more robust to light and weather variations, and can better distinguish tiny water bodies compared to other DCNN models.</description><subject>Artificial neural networks</subject><subject>Deep convolutional neural networks (DCNNs)</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Hydrology</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imagery</subject><subject>Indexes</subject><subject>Methods</subject><subject>Modules</subject><subject>multispectral remote sensing</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>semantic segmentation</subject><subject>Spaceborne remote sensing</subject><subject>Urban areas</subject><subject>Vegetation mapping</subject><subject>Water bodies</subject><subject>water body detection</subject><subject>Water depth</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kUtrIzEQhMWSwDrJ_oJcBvY8jt5SH_NeB4eFOCFHIWtaZsx45Gjkg__9TnZCTg3d9VU1FCGXjM4Zo3D1tHq9flnNOeVsLihYbewPMuNMsZopoU7IjIGAmkkqf5KzYdhSqrkBMSPvd4j7eok-922_qW_8gE31fOhKO-wxlOy7auULdl1bsFrs_AarFW522Bdf2tRXMeXqfRTk6iY1x-oOy0iNhwtyGn034K-veU7eHu5fb__Uy7-Pi9vrZR2kkaUGGwRiNMFGjyihsYpSG1WI0QZtghJgtEIEHyFwBpY3UhhJreaCrzmKc7KYfJvkt26f253PR5d86_4vUt44n0sbOnRyjKIUONMySvQaGFcY1tqotTIB9Oj1e_La5_RxwKG4bTrkfnzfcaUMGKBAR5WYVCGnYcgYv1MZdZ9tuKkN99mG-2pjpC4nqkXEbwIkcGOl-Aet2oXk</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yuan, Kunhao</creator><creator>Zhuang, Xu</creator><creator>Schaefer, Gerald</creator><creator>Feng, Jianxin</creator><creator>Guan, Lin</creator><creator>Fang, Hui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9877-0219</orcidid><orcidid>https://orcid.org/0000-0001-9365-7420</orcidid><orcidid>https://orcid.org/0000-0002-3780-6863</orcidid></search><sort><creationdate>2021</creationdate><title>Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection</title><author>Yuan, Kunhao ; Zhuang, Xu ; Schaefer, Gerald ; Feng, Jianxin ; Guan, Lin ; Fang, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-98c3eef7c8faee49d85008f5cff8c67c539765ee9af9c21982d4374086232b2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Deep convolutional neural networks (DCNNs)</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Hydrology</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imagery</topic><topic>Indexes</topic><topic>Methods</topic><topic>Modules</topic><topic>multispectral remote sensing</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>semantic segmentation</topic><topic>Spaceborne remote sensing</topic><topic>Urban areas</topic><topic>Vegetation mapping</topic><topic>Water bodies</topic><topic>water body detection</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Kunhao</creatorcontrib><creatorcontrib>Zhuang, Xu</creatorcontrib><creatorcontrib>Schaefer, Gerald</creatorcontrib><creatorcontrib>Feng, Jianxin</creatorcontrib><creatorcontrib>Guan, Lin</creatorcontrib><creatorcontrib>Fang, Hui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Kunhao</au><au>Zhuang, Xu</au><au>Schaefer, Gerald</au><au>Feng, Jianxin</au><au>Guan, Lin</au><au>Fang, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>7422</spage><epage>7434</epage><pages>7422-7434</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Automated water body detection from satellite imagery is a fundamental stage for urban hydrological studies. In recent years, various deep convolutional neural network (DCNN)-based methods have been proposed to segment remote sensing data collected by conventional RGB or multispectral imagery for such studies. However, how to effectively explore the wider spectrum bands of multispectral sensors to achieve significantly better performance compared to the use of only RGB bands has been left underexplored. In this article, we propose a novel DCNN model-multichannel water body detection network (MC-WBDN)-that incorporates three innovative components, i.e., a multichannel fusion module, an Enhanced Atrous Spatial Pyramid Pooling module, and Space-to-Depth/Depth-to-Space operations, to outperform state-of-the-art DCNN-based water body detection methods. Experimental results convincingly show that our MC-WBDN model achieves remarkable water body detection performance, is more robust to light and weather variations, and can better distinguish tiny water bodies compared to other DCNN models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3098678</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9877-0219</orcidid><orcidid>https://orcid.org/0000-0001-9365-7420</orcidid><orcidid>https://orcid.org/0000-0002-3780-6863</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.7422-7434
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_9492784
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Deep convolutional neural networks (DCNNs)
Detection
Feature extraction
feature fusion
Hydrology
Image processing
Image segmentation
Imagery
Indexes
Methods
Modules
multispectral remote sensing
Neural networks
Remote sensing
Satellite imagery
Satellites
semantic segmentation
Spaceborne remote sensing
Urban areas
Vegetation mapping
Water bodies
water body detection
Water depth
title Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-Learning-Based%20Multispectral%20Satellite%20Image%20Segmentation%20for%20Water%20Body%20Detection&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Yuan,%20Kunhao&rft.date=2021&rft.volume=14&rft.spage=7422&rft.epage=7434&rft.pages=7422-7434&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3098678&rft_dat=%3Cproquest_ieee_%3E2557979090%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557979090&rft_id=info:pmid/&rft_ieee_id=9492784&rft_doaj_id=oai_doaj_org_article_4c3e0092164f4ea69125ecb675b57c96&rfr_iscdi=true