Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection

Automated water body detection from satellite imagery is a fundamental stage for urban hydrological studies. In recent years, various deep convolutional neural network (DCNN)-based methods have been proposed to segment remote sensing data collected by conventional RGB or multispectral imagery for su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.7422-7434
Hauptverfasser: Yuan, Kunhao, Zhuang, Xu, Schaefer, Gerald, Feng, Jianxin, Guan, Lin, Fang, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automated water body detection from satellite imagery is a fundamental stage for urban hydrological studies. In recent years, various deep convolutional neural network (DCNN)-based methods have been proposed to segment remote sensing data collected by conventional RGB or multispectral imagery for such studies. However, how to effectively explore the wider spectrum bands of multispectral sensors to achieve significantly better performance compared to the use of only RGB bands has been left underexplored. In this article, we propose a novel DCNN model-multichannel water body detection network (MC-WBDN)-that incorporates three innovative components, i.e., a multichannel fusion module, an Enhanced Atrous Spatial Pyramid Pooling module, and Space-to-Depth/Depth-to-Space operations, to outperform state-of-the-art DCNN-based water body detection methods. Experimental results convincingly show that our MC-WBDN model achieves remarkable water body detection performance, is more robust to light and weather variations, and can better distinguish tiny water bodies compared to other DCNN models.
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2021.3098678