Deep Learning Methods for Vessel Trajectory Prediction Based on Recurrent Neural Networks

Data-driven methods open up unprecedented possibilities for maritime surveillance using automatic identification system (AIS) data. In this work, we explore deep learning strategies using historical AIS observations to address the problem of predicting future vessel trajectories with a prediction ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2021-12, Vol.57 (6), p.4329-4346
Hauptverfasser: Capobianco, Samuele, Millefiori, Leonardo M., Forti, Nicola, Braca, Paolo, Willett, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data-driven methods open up unprecedented possibilities for maritime surveillance using automatic identification system (AIS) data. In this work, we explore deep learning strategies using historical AIS observations to address the problem of predicting future vessel trajectories with a prediction horizon of several hours. We propose novel sequence-to-sequence vessel trajectory prediction models based on encoder–decoder recurrent neural networks (RNNs) that are trained on historical trajectory data to predict future trajectory samples given previous observations. The proposed architecture combines long short-term memory RNNs for sequence modeling to encode the observed data and generate future predictions with different intermediate aggregation layers to capture space-time dependencies in sequential data. Experimental results on vessel trajectories from an AIS dataset made freely available by the Danish Maritime Authority (DMA) show the effectiveness of deep learning methods for trajectory prediction based on sequence-to-sequence neural networks, which achieve better performance than baseline approaches based on linear regression or on the multilayer perceptron architecture. The comparative evaluation of results shows: first, the superiority of attention pooling over static pooling for the specific application, and second, the remarkable performance improvement that can be obtained with labeled trajectories, i.e., when predictions are conditioned on a low-level context representation encoded from the sequence of past observations, as well as on additional inputs (e.g., port of departure or arrival) about the vessel's high-level intention, which may be available from AIS.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2021.3096873