Real-Time Radio Technology and Modulation Classification via an LSTM Auto-Encoder
Identification of the type of communication technology and/or modulation scheme based on detected radio signal are challenging problems encountered in a variety of applications including spectrum allocation and radio interference mitigation. They are rendered difficult due to a growing number of emi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2022-01, Vol.21 (1), p.370-382 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Identification of the type of communication technology and/or modulation scheme based on detected radio signal are challenging problems encountered in a variety of applications including spectrum allocation and radio interference mitigation. They are rendered difficult due to a growing number of emitter types and varied effects of real-world channels upon the radio signal. Existing spectrum monitoring techniques are capable of acquiring massive amounts of radio and real-time spectrum data using compact sensors deployed in a variety of settings. However, state-of-the-art methods that use such data to classify emitter types and detect communication schemes struggle to achieve required levels of accuracy at a computational efficiency that would allow their implementation on low-cost computational platforms. In this paper, we present a learning framework based on an LSTM denoising auto-encoder designed to automatically extract stable and robust features from noisy radio signals, and infer modulation or technology type using the learned features. The algorithm utilizes a compact neural network architecture readily implemented on a low-cost computational platform while exceeding state-of-the-art accuracy. Results on realistic synthetic as well as over-the-air radio data demonstrate that the proposed framework reliably and efficiently classifies received radio signals, often demonstrating superior performance compared to state-of-the-art methods. Source codes are available at https://github.com/WuLoli/LSTMDAE . |
---|---|
ISSN: | 1536-1276 1558-2248 |
DOI: | 10.1109/TWC.2021.3095855 |