Post2Vec: Learning Distributed Representations of Stack Overflow Posts

Past studies have proposed solutions that analyze Stack Overflow content to help users find desired information or aid various downstream software engineering tasks. A common step performed by those solutions is to extract suitable representations of posts; typically, in the form of meaningful vecto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering 2022-09, Vol.48 (9), p.3423-3441
Hauptverfasser: Xu, Bowen, Hoang, Thong, Sharma, Abhishek, Yang, Chengran, Xia, Xin, Lo, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Past studies have proposed solutions that analyze Stack Overflow content to help users find desired information or aid various downstream software engineering tasks. A common step performed by those solutions is to extract suitable representations of posts; typically, in the form of meaningful vectors. These vectors are then used for different tasks, for example, tag recommendation, relatedness prediction, post classification, and API recommendation. Intuitively, the quality of the vector representations of posts determines the effectiveness of the solutions in performing the respective tasks. In this work, to aid existing studies that analyze Stack Overflow posts, we propose a specialized deep learning architecture Post2Vec which extracts distributed representations of Stack Overflow posts. Post2Vec is aware of different types of content present in Stack Overflow posts, i.e., title, description, and code snippets, and integrates them seamlessly to learn post representations. Tags provided by Stack Overflow users that serve as a common vocabulary that captures the semantics of posts are used to guide Post2Vec in its task. To evaluate the quality of Post2Vec's deep learning architecture, we first investigate its end-to-end effectiveness in tag recommendation task. The results are compared to those of state-of-the-art tag recommendation approaches that also employ deep neural networks. We observe that Post2Vec achieves 15-25 percent improvement in terms of F1-score@5 at a lower computational cost. Moreover, to evaluate the value of representations learned by Post2Vec, we use them for three other tasks, i.e., relatedness prediction, post classification, and API recommendation. We demonstrate that the representations can be used to boost the effectiveness of state-of-the-art solutions for the three tasks by substantial margins (by 10, 7, and 10 percent in terms of F1-score, F1-score, and correctness, respectively). We release our replication package at https://github.com/maxxbw/Post2Vec .
ISSN:0098-5589
1939-3520
DOI:10.1109/TSE.2021.3093761