Filtering for chaos
A nonlinear digital filtering approach to the problem of tracing the changing chaotic features of a nonstationary time series is proposed. The filters are based on nonlinear models whose dynamics are conditioned on the value of a parameter in the model. The dynamical behaviour can be asymptotically...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A nonlinear digital filtering approach to the problem of tracing the changing chaotic features of a nonstationary time series is proposed. The filters are based on nonlinear models whose dynamics are conditioned on the value of a parameter in the model. The dynamical behaviour can be asymptotically stable, periodic, or chaotic depending upon the parameter value. Over a critical range of values of the parameter the model is sensitively dependent on initial conditions and as a consequence the output behaviour becomes increasingly chaotic as the parameter value increases over this range. Filtering for chaos is a nonlinear autoregressive procedure for estimating this parameter as a basis for tracking changes in the chaotic dynamical behaviour of a nonstationary time series such as the EEG.< > |
---|---|
DOI: | 10.1109/IEMBS.1988.94692 |