A Review of Low Temperature Process Modules Leading Up to the First (≤500 °C) Planar FDSOI CMOS Devices for 3-D Sequential Integration
In this article a review of low temperature (LT) (≤500 °C) process modules in view of 3-D sequential integration is presented. First, both the bottom device thermal stability and intermediate back end of line (iBEOL) versus thermal anneal and ns-laser anneal is determined, setting up the top device...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2021-07, Vol.68 (7), p.3142-3148 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article a review of low temperature (LT) (≤500 °C) process modules in view of 3-D sequential integration is presented. First, both the bottom device thermal stability and intermediate back end of line (iBEOL) versus thermal anneal and ns-laser anneal is determined, setting up the top device temperature fabrication process at 500 °C during a couple of hours. Then, the full LT process flow with process modules developed at 500 °C is exposed. Great progress and breakthrough for high performance (HP) digital stacked FETs has been made recently. Areas previously considered as potential showstoppers have been overcome: 1) efficient contamination containment for wafers with Cu/ultra low- {k} (ULK) iBEOL enabling their reintroduction in front end of line (FEOL) for top FET processing; 2) low-resistance poly-Si gate for the top FETs and solutions for improving gate-stack reliability; and 3) full LT raised source drain (RSD) epitaxy including surface preparation combined with SiCO 400 °C spacer and SPER junctions activation. Finally, the first functional nMOS and pMOS demonstration with a 500 °C thermal budget (TB) is highlighted. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2021.3084916 |