Fundamental Limits of Many-User MAC With Finite Payloads and Fading

Consider a (multiple-access) wireless communication system where users are connected to a unique base station over a shared-spectrum radio links. Each user has a fixed number k of bits to send to the base station, and his signal gets attenuated by a random channel gain (quasi-static fading). In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2021-09, Vol.67 (9), p.5853-5884
Hauptverfasser: Kowshik, Suhas S., Polyanskiy, Yury
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider a (multiple-access) wireless communication system where users are connected to a unique base station over a shared-spectrum radio links. Each user has a fixed number k of bits to send to the base station, and his signal gets attenuated by a random channel gain (quasi-static fading). In this paper we consider the many-user asymptotics of Chen-Chen-Guo'2017, where the number of users grows linearly with the blocklength. Differently, though, we adopt a per-user probability of error (PUPE) criterion (as opposed to classical joint-error probability criterion). Under PUPE the finite energy-per-bit communication is possible, and we are able to derive bounds on the tradeoff between energy and spectral efficiencies. We reconfirm the curious behaviour (previously observed for non-fading MAC) of the possibility of almost perfect multi-user interference (MUI) cancellation for user densities below a critical threshold. Further, we demonstrate the suboptimality of standard solutions such as orthogonalization (i.e. TDMA/FDMA) and treating interference as noise (i.e. pseudo-random CDMA without multi-user detection). Notably, the problem treated here can be seen as a variant of support recovery in compressed sensing for the unusual definition of sparsity with one non-zero entry per each contiguous section of 2^{k} coordinates. This identifies our problem with that of the sparse regression codes (SPARCs) and hence our results can be equivalently understood in the context of SPARCs with sections of length 2 100 . Finally, we discuss the relation of the almost perfect MUI cancellation property and the replica-method predictions.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2021.3091423