Towards Optimal Low-Latency Live Video Streaming
Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live streaming by developing dynamic models and optimal adaptation strategies to esta...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on networking 2021-10, Vol.29 (5), p.2327-2338 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2338 |
---|---|
container_issue | 5 |
container_start_page | 2327 |
container_title | IEEE/ACM transactions on networking |
container_volume | 29 |
creator | Sun, Liyang Zong, Tongyu Wang, Siquan Liu, Yong Wang, Yao |
description | Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live streaming by developing dynamic models and optimal adaptation strategies to establish QoE upper bounds as a function of the allowable end-to-end latency. We further develop practical live streaming algorithms within the iterative Linear Quadratic Regulator (iLQR) based Model Predictive Control and Deep Reinforcement Learning frameworks, namely MPC-Live and DRL-Live, to maximize user live streaming QoE by adapting the video bitrate while maintaining low end-to-end video latency in dynamic network environment. Through extensive experiments driven by real network traces, we demonstrate that our live streaming algorithms can achieve close-to-optimal performance within the latency range of two to five seconds. |
doi_str_mv | 10.1109/TNET.2021.3087625 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9459436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9459436</ieee_id><sourcerecordid>2582247863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-8617a866ae14e163b00bf2a16f3bbde830d467267606afbd94e046a978c181653</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhhdRsFYfQLwEPKfO7GYnm6OUWoVgD0avyyaZSErb1N3U0rc3pcXTzOH7_2E-Ie4RJoiQPRXvs2IiQeJEgUlJ6gsxQq1NLDXR5bADqZgok9fiJoQlACqQNBJQdHvn6xAttn27dqso7_Zx7nreVIcob385-mpr7qKP3rNbt5vvW3HVuFXgu_Mci8-XWTF9jfPF_G36nMeVUtTHhjB1hsgxJoykSoCykQ6pUWVZs1FQJ5RKSgnINWWdJQwJuSw1FRokrcbi8dS79d3PjkNvl93Ob4aTVmojZZIaUgOFJ6ryXQieG7v1wxv-YBHsUYw9irFHMfYsZsg8nDItM__zWaKzRJH6A5DcXLU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582247863</pqid></control><display><type>article</type><title>Towards Optimal Low-Latency Live Video Streaming</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Liyang ; Zong, Tongyu ; Wang, Siquan ; Liu, Yong ; Wang, Yao</creator><creatorcontrib>Sun, Liyang ; Zong, Tongyu ; Wang, Siquan ; Liu, Yong ; Wang, Yao</creatorcontrib><description>Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live streaming by developing dynamic models and optimal adaptation strategies to establish QoE upper bounds as a function of the allowable end-to-end latency. We further develop practical live streaming algorithms within the iterative Linear Quadratic Regulator (iLQR) based Model Predictive Control and Deep Reinforcement Learning frameworks, namely MPC-Live and DRL-Live, to maximize user live streaming QoE by adapting the video bitrate while maintaining low end-to-end video latency in dynamic network environment. Through extensive experiments driven by real network traces, we demonstrate that our live streaming algorithms can achieve close-to-optimal performance within the latency range of two to five seconds.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2021.3087625</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithms ; Bandwidth ; Dynamic models ; Heuristic algorithms ; iterative linear quadratic regulator ; Iterative methods ; Linear quadratic regulator ; Live streaming ; Machine learning ; Network latency ; Predictive control ; Quality assessment ; Quality of experience ; reinforcement learning ; Streaming media ; Upper bounds ; Video transmission</subject><ispartof>IEEE/ACM transactions on networking, 2021-10, Vol.29 (5), p.2327-2338</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-8617a866ae14e163b00bf2a16f3bbde830d467267606afbd94e046a978c181653</citedby><cites>FETCH-LOGICAL-c336t-8617a866ae14e163b00bf2a16f3bbde830d467267606afbd94e046a978c181653</cites><orcidid>0000-0003-3199-3802 ; 0000-0001-7593-3815 ; 0000-0001-5107-4614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9459436$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9459436$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Liyang</creatorcontrib><creatorcontrib>Zong, Tongyu</creatorcontrib><creatorcontrib>Wang, Siquan</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><title>Towards Optimal Low-Latency Live Video Streaming</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live streaming by developing dynamic models and optimal adaptation strategies to establish QoE upper bounds as a function of the allowable end-to-end latency. We further develop practical live streaming algorithms within the iterative Linear Quadratic Regulator (iLQR) based Model Predictive Control and Deep Reinforcement Learning frameworks, namely MPC-Live and DRL-Live, to maximize user live streaming QoE by adapting the video bitrate while maintaining low end-to-end video latency in dynamic network environment. Through extensive experiments driven by real network traces, we demonstrate that our live streaming algorithms can achieve close-to-optimal performance within the latency range of two to five seconds.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Dynamic models</subject><subject>Heuristic algorithms</subject><subject>iterative linear quadratic regulator</subject><subject>Iterative methods</subject><subject>Linear quadratic regulator</subject><subject>Live streaming</subject><subject>Machine learning</subject><subject>Network latency</subject><subject>Predictive control</subject><subject>Quality assessment</subject><subject>Quality of experience</subject><subject>reinforcement learning</subject><subject>Streaming media</subject><subject>Upper bounds</subject><subject>Video transmission</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhhdRsFYfQLwEPKfO7GYnm6OUWoVgD0avyyaZSErb1N3U0rc3pcXTzOH7_2E-Ie4RJoiQPRXvs2IiQeJEgUlJ6gsxQq1NLDXR5bADqZgok9fiJoQlACqQNBJQdHvn6xAttn27dqso7_Zx7nreVIcob385-mpr7qKP3rNbt5vvW3HVuFXgu_Mci8-XWTF9jfPF_G36nMeVUtTHhjB1hsgxJoykSoCykQ6pUWVZs1FQJ5RKSgnINWWdJQwJuSw1FRokrcbi8dS79d3PjkNvl93Ob4aTVmojZZIaUgOFJ6ryXQieG7v1wxv-YBHsUYw9irFHMfYsZsg8nDItM__zWaKzRJH6A5DcXLU</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Sun, Liyang</creator><creator>Zong, Tongyu</creator><creator>Wang, Siquan</creator><creator>Liu, Yong</creator><creator>Wang, Yao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3199-3802</orcidid><orcidid>https://orcid.org/0000-0001-7593-3815</orcidid><orcidid>https://orcid.org/0000-0001-5107-4614</orcidid></search><sort><creationdate>202110</creationdate><title>Towards Optimal Low-Latency Live Video Streaming</title><author>Sun, Liyang ; Zong, Tongyu ; Wang, Siquan ; Liu, Yong ; Wang, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-8617a866ae14e163b00bf2a16f3bbde830d467267606afbd94e046a978c181653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Dynamic models</topic><topic>Heuristic algorithms</topic><topic>iterative linear quadratic regulator</topic><topic>Iterative methods</topic><topic>Linear quadratic regulator</topic><topic>Live streaming</topic><topic>Machine learning</topic><topic>Network latency</topic><topic>Predictive control</topic><topic>Quality assessment</topic><topic>Quality of experience</topic><topic>reinforcement learning</topic><topic>Streaming media</topic><topic>Upper bounds</topic><topic>Video transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Liyang</creatorcontrib><creatorcontrib>Zong, Tongyu</creatorcontrib><creatorcontrib>Wang, Siquan</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Liyang</au><au>Zong, Tongyu</au><au>Wang, Siquan</au><au>Liu, Yong</au><au>Wang, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Optimal Low-Latency Live Video Streaming</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2021-10</date><risdate>2021</risdate><volume>29</volume><issue>5</issue><spage>2327</spage><epage>2338</epage><pages>2327-2338</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live streaming by developing dynamic models and optimal adaptation strategies to establish QoE upper bounds as a function of the allowable end-to-end latency. We further develop practical live streaming algorithms within the iterative Linear Quadratic Regulator (iLQR) based Model Predictive Control and Deep Reinforcement Learning frameworks, namely MPC-Live and DRL-Live, to maximize user live streaming QoE by adapting the video bitrate while maintaining low end-to-end video latency in dynamic network environment. Through extensive experiments driven by real network traces, we demonstrate that our live streaming algorithms can achieve close-to-optimal performance within the latency range of two to five seconds.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2021.3087625</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3199-3802</orcidid><orcidid>https://orcid.org/0000-0001-7593-3815</orcidid><orcidid>https://orcid.org/0000-0001-5107-4614</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6692 |
ispartof | IEEE/ACM transactions on networking, 2021-10, Vol.29 (5), p.2327-2338 |
issn | 1063-6692 1558-2566 |
language | eng |
recordid | cdi_ieee_primary_9459436 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Algorithms Bandwidth Dynamic models Heuristic algorithms iterative linear quadratic regulator Iterative methods Linear quadratic regulator Live streaming Machine learning Network latency Predictive control Quality assessment Quality of experience reinforcement learning Streaming media Upper bounds Video transmission |
title | Towards Optimal Low-Latency Live Video Streaming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Optimal%20Low-Latency%20Live%20Video%20Streaming&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Sun,%20Liyang&rft.date=2021-10&rft.volume=29&rft.issue=5&rft.spage=2327&rft.epage=2338&rft.pages=2327-2338&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2021.3087625&rft_dat=%3Cproquest_RIE%3E2582247863%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582247863&rft_id=info:pmid/&rft_ieee_id=9459436&rfr_iscdi=true |