Towards Optimal Low-Latency Live Video Streaming

Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live streaming by developing dynamic models and optimal adaptation strategies to esta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2021-10, Vol.29 (5), p.2327-2338
Hauptverfasser: Sun, Liyang, Zong, Tongyu, Wang, Siquan, Liu, Yong, Wang, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2338
container_issue 5
container_start_page 2327
container_title IEEE/ACM transactions on networking
container_volume 29
creator Sun, Liyang
Zong, Tongyu
Wang, Siquan
Liu, Yong
Wang, Yao
description Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live streaming by developing dynamic models and optimal adaptation strategies to establish QoE upper bounds as a function of the allowable end-to-end latency. We further develop practical live streaming algorithms within the iterative Linear Quadratic Regulator (iLQR) based Model Predictive Control and Deep Reinforcement Learning frameworks, namely MPC-Live and DRL-Live, to maximize user live streaming QoE by adapting the video bitrate while maintaining low end-to-end video latency in dynamic network environment. Through extensive experiments driven by real network traces, we demonstrate that our live streaming algorithms can achieve close-to-optimal performance within the latency range of two to five seconds.
doi_str_mv 10.1109/TNET.2021.3087625
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9459436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9459436</ieee_id><sourcerecordid>2582247863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-8617a866ae14e163b00bf2a16f3bbde830d467267606afbd94e046a978c181653</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhhdRsFYfQLwEPKfO7GYnm6OUWoVgD0avyyaZSErb1N3U0rc3pcXTzOH7_2E-Ie4RJoiQPRXvs2IiQeJEgUlJ6gsxQq1NLDXR5bADqZgok9fiJoQlACqQNBJQdHvn6xAttn27dqso7_Zx7nreVIcob385-mpr7qKP3rNbt5vvW3HVuFXgu_Mci8-XWTF9jfPF_G36nMeVUtTHhjB1hsgxJoykSoCykQ6pUWVZs1FQJ5RKSgnINWWdJQwJuSw1FRokrcbi8dS79d3PjkNvl93Ob4aTVmojZZIaUgOFJ6ryXQieG7v1wxv-YBHsUYw9irFHMfYsZsg8nDItM__zWaKzRJH6A5DcXLU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582247863</pqid></control><display><type>article</type><title>Towards Optimal Low-Latency Live Video Streaming</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Liyang ; Zong, Tongyu ; Wang, Siquan ; Liu, Yong ; Wang, Yao</creator><creatorcontrib>Sun, Liyang ; Zong, Tongyu ; Wang, Siquan ; Liu, Yong ; Wang, Yao</creatorcontrib><description>Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live streaming by developing dynamic models and optimal adaptation strategies to establish QoE upper bounds as a function of the allowable end-to-end latency. We further develop practical live streaming algorithms within the iterative Linear Quadratic Regulator (iLQR) based Model Predictive Control and Deep Reinforcement Learning frameworks, namely MPC-Live and DRL-Live, to maximize user live streaming QoE by adapting the video bitrate while maintaining low end-to-end video latency in dynamic network environment. Through extensive experiments driven by real network traces, we demonstrate that our live streaming algorithms can achieve close-to-optimal performance within the latency range of two to five seconds.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2021.3087625</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithms ; Bandwidth ; Dynamic models ; Heuristic algorithms ; iterative linear quadratic regulator ; Iterative methods ; Linear quadratic regulator ; Live streaming ; Machine learning ; Network latency ; Predictive control ; Quality assessment ; Quality of experience ; reinforcement learning ; Streaming media ; Upper bounds ; Video transmission</subject><ispartof>IEEE/ACM transactions on networking, 2021-10, Vol.29 (5), p.2327-2338</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-8617a866ae14e163b00bf2a16f3bbde830d467267606afbd94e046a978c181653</citedby><cites>FETCH-LOGICAL-c336t-8617a866ae14e163b00bf2a16f3bbde830d467267606afbd94e046a978c181653</cites><orcidid>0000-0003-3199-3802 ; 0000-0001-7593-3815 ; 0000-0001-5107-4614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9459436$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9459436$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Liyang</creatorcontrib><creatorcontrib>Zong, Tongyu</creatorcontrib><creatorcontrib>Wang, Siquan</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><title>Towards Optimal Low-Latency Live Video Streaming</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live streaming by developing dynamic models and optimal adaptation strategies to establish QoE upper bounds as a function of the allowable end-to-end latency. We further develop practical live streaming algorithms within the iterative Linear Quadratic Regulator (iLQR) based Model Predictive Control and Deep Reinforcement Learning frameworks, namely MPC-Live and DRL-Live, to maximize user live streaming QoE by adapting the video bitrate while maintaining low end-to-end video latency in dynamic network environment. Through extensive experiments driven by real network traces, we demonstrate that our live streaming algorithms can achieve close-to-optimal performance within the latency range of two to five seconds.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Dynamic models</subject><subject>Heuristic algorithms</subject><subject>iterative linear quadratic regulator</subject><subject>Iterative methods</subject><subject>Linear quadratic regulator</subject><subject>Live streaming</subject><subject>Machine learning</subject><subject>Network latency</subject><subject>Predictive control</subject><subject>Quality assessment</subject><subject>Quality of experience</subject><subject>reinforcement learning</subject><subject>Streaming media</subject><subject>Upper bounds</subject><subject>Video transmission</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhhdRsFYfQLwEPKfO7GYnm6OUWoVgD0avyyaZSErb1N3U0rc3pcXTzOH7_2E-Ie4RJoiQPRXvs2IiQeJEgUlJ6gsxQq1NLDXR5bADqZgok9fiJoQlACqQNBJQdHvn6xAttn27dqso7_Zx7nreVIcob385-mpr7qKP3rNbt5vvW3HVuFXgu_Mci8-XWTF9jfPF_G36nMeVUtTHhjB1hsgxJoykSoCykQ6pUWVZs1FQJ5RKSgnINWWdJQwJuSw1FRokrcbi8dS79d3PjkNvl93Ob4aTVmojZZIaUgOFJ6ryXQieG7v1wxv-YBHsUYw9irFHMfYsZsg8nDItM__zWaKzRJH6A5DcXLU</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Sun, Liyang</creator><creator>Zong, Tongyu</creator><creator>Wang, Siquan</creator><creator>Liu, Yong</creator><creator>Wang, Yao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3199-3802</orcidid><orcidid>https://orcid.org/0000-0001-7593-3815</orcidid><orcidid>https://orcid.org/0000-0001-5107-4614</orcidid></search><sort><creationdate>202110</creationdate><title>Towards Optimal Low-Latency Live Video Streaming</title><author>Sun, Liyang ; Zong, Tongyu ; Wang, Siquan ; Liu, Yong ; Wang, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-8617a866ae14e163b00bf2a16f3bbde830d467267606afbd94e046a978c181653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Dynamic models</topic><topic>Heuristic algorithms</topic><topic>iterative linear quadratic regulator</topic><topic>Iterative methods</topic><topic>Linear quadratic regulator</topic><topic>Live streaming</topic><topic>Machine learning</topic><topic>Network latency</topic><topic>Predictive control</topic><topic>Quality assessment</topic><topic>Quality of experience</topic><topic>reinforcement learning</topic><topic>Streaming media</topic><topic>Upper bounds</topic><topic>Video transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Liyang</creatorcontrib><creatorcontrib>Zong, Tongyu</creatorcontrib><creatorcontrib>Wang, Siquan</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Liyang</au><au>Zong, Tongyu</au><au>Wang, Siquan</au><au>Liu, Yong</au><au>Wang, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Optimal Low-Latency Live Video Streaming</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2021-10</date><risdate>2021</risdate><volume>29</volume><issue>5</issue><spage>2327</spage><epage>2338</epage><pages>2327-2338</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live streaming by developing dynamic models and optimal adaptation strategies to establish QoE upper bounds as a function of the allowable end-to-end latency. We further develop practical live streaming algorithms within the iterative Linear Quadratic Regulator (iLQR) based Model Predictive Control and Deep Reinforcement Learning frameworks, namely MPC-Live and DRL-Live, to maximize user live streaming QoE by adapting the video bitrate while maintaining low end-to-end video latency in dynamic network environment. Through extensive experiments driven by real network traces, we demonstrate that our live streaming algorithms can achieve close-to-optimal performance within the latency range of two to five seconds.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2021.3087625</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3199-3802</orcidid><orcidid>https://orcid.org/0000-0001-7593-3815</orcidid><orcidid>https://orcid.org/0000-0001-5107-4614</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2021-10, Vol.29 (5), p.2327-2338
issn 1063-6692
1558-2566
language eng
recordid cdi_ieee_primary_9459436
source IEEE Electronic Library (IEL)
subjects Adaptation models
Algorithms
Bandwidth
Dynamic models
Heuristic algorithms
iterative linear quadratic regulator
Iterative methods
Linear quadratic regulator
Live streaming
Machine learning
Network latency
Predictive control
Quality assessment
Quality of experience
reinforcement learning
Streaming media
Upper bounds
Video transmission
title Towards Optimal Low-Latency Live Video Streaming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Optimal%20Low-Latency%20Live%20Video%20Streaming&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Sun,%20Liyang&rft.date=2021-10&rft.volume=29&rft.issue=5&rft.spage=2327&rft.epage=2338&rft.pages=2327-2338&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2021.3087625&rft_dat=%3Cproquest_RIE%3E2582247863%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582247863&rft_id=info:pmid/&rft_ieee_id=9459436&rfr_iscdi=true