Towards Optimal Low-Latency Live Video Streaming

Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live streaming by developing dynamic models and optimal adaptation strategies to esta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2021-10, Vol.29 (5), p.2327-2338
Hauptverfasser: Sun, Liyang, Zong, Tongyu, Wang, Siquan, Liu, Yong, Wang, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live streaming by developing dynamic models and optimal adaptation strategies to establish QoE upper bounds as a function of the allowable end-to-end latency. We further develop practical live streaming algorithms within the iterative Linear Quadratic Regulator (iLQR) based Model Predictive Control and Deep Reinforcement Learning frameworks, namely MPC-Live and DRL-Live, to maximize user live streaming QoE by adapting the video bitrate while maintaining low end-to-end video latency in dynamic network environment. Through extensive experiments driven by real network traces, we demonstrate that our live streaming algorithms can achieve close-to-optimal performance within the latency range of two to five seconds.
ISSN:1063-6692
1558-2566
DOI:10.1109/TNET.2021.3087625