Robust Precipitation Bias Correction Through an Ordinal Distribution Autoencoder
Numerical precipitation prediction plays a crucial role in weather forecasting and has broad applications in public services including aviation management and urban disaster early-warning systems. However, numerical weather prediction (NWP) models are often constrained by a systematic bias due to co...
Gespeichert in:
Veröffentlicht in: | IEEE intelligent systems 2022-01, Vol.37 (1), p.60-70 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Numerical precipitation prediction plays a crucial role in weather forecasting and has broad applications in public services including aviation management and urban disaster early-warning systems. However, numerical weather prediction (NWP) models are often constrained by a systematic bias due to coarse spatial resolution, lack of parameterizations, and limitations of observation and conventional meteorological models, including constrained sample size and long-tail distribution. To address these issues, we present a data-driven deep learning model, named the ordinal distribution autoencoder (ODA), which principally includes a precipitation confidence network and a combinatorial network that contains two blocks, i.e., a denoising autoencoder block and an ordinal distribution regression block. As an expert-free model for bias correction of precipitation, it can effectively correct numerical precipitation prediction based on meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and SMS-WARMS, an NWP model used in East China. Experiments in the two NWP models demonstrate that, compared with several classical machine-learning algorithms and deep learning models, our proposed ODA generally performs better in bias correction. |
---|---|
ISSN: | 1541-1672 1941-1294 |
DOI: | 10.1109/MIS.2021.3088543 |