Multiple Harmonics Extended Impedance Model of Piezoelectric Energy Harvesting Systems
In a piezoelectric energy harvesting (PEH) system, the dynamics and harvested power vary with different base excitation. Accurately predicting the energy harvesting capability under different types of excitation is of importance for the analysis and design of PEH systems. Many studies started the mo...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2022-04, Vol.27 (2), p.1185-1195 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1195 |
---|---|
container_issue | 2 |
container_start_page | 1185 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 27 |
creator | Gao, Yiming Liang, Junrui Liao, Yabin |
description | In a piezoelectric energy harvesting (PEH) system, the dynamics and harvested power vary with different base excitation. Accurately predicting the energy harvesting capability under different types of excitation is of importance for the analysis and design of PEH systems. Many studies started the modeling and analysis of such an electromechanically coupled system under harmonic excitation. However, in real-world scenarios, environmental vibration might be irregular and impulsive. This article extends the equivalent impedance analysis from single harmonic to multiple harmonics for describing the complex dynamics and harvested power of a PEH system under nonharmonic base excitation. The proposed multiple harmonic analysis is based on the extended impedance method (EIM), which uniforms the impedance expressions of both linear and nonlinear components in a matrix form. The modeling principle and procedures of EIM are provided in detail. The power flow in the steady-state PEH systems and energy flow in the transient PEH systems are numerically discussed. Experiments based on a base-excited piezoelectric cantilever, as the energy harvester, and a full-wave bridge rectifier, as the power conditioning circuit, validate the EIM-based analysis, in terms of harvested power/energy prediction and dynamics description. |
doi_str_mv | 10.1109/TMECH.2021.3083319 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9442334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9442334</ieee_id><sourcerecordid>2650297314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-c60d3ba1e13481f58d8cbae18eeb5b0301216b05cad148406c03e7e3c8b2fa843</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWKt_QC8LnlNndjfp5iil2kKLglW8LZvNpETy5W4q1l9vYounGYb3mRmeILhGmCBCcrdZz2eLCQeOEwFKCExOghEmEkNA-X7a9_00lFJE58GF9x8AIBFwFLytd2VXtCWxhXFVUxfWs_l3R3VGGVtWLWWmtsTWTUYla3L2XNBPQyXZzhWWzWty2_2AfpHvinrLXva-o8pfBme5KT1dHes4eH2Yb2aLcPX0uJzdr0LLk6gLbQyZSA0SCqkwj1SmbGoIFVEapSAAOcYpRNZkKJWE2IKgKQmrUp4bJcU4uD3sbV3zuet_0B_NztX9Sc3jCHgyFTik-CFlXeO9o1y3rqiM22sEPfjTf_704E8f_fXQzQEqiOgfSKTkQkjxC1s_bKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650297314</pqid></control><display><type>article</type><title>Multiple Harmonics Extended Impedance Model of Piezoelectric Energy Harvesting Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Yiming ; Liang, Junrui ; Liao, Yabin</creator><creatorcontrib>Gao, Yiming ; Liang, Junrui ; Liao, Yabin</creatorcontrib><description>In a piezoelectric energy harvesting (PEH) system, the dynamics and harvested power vary with different base excitation. Accurately predicting the energy harvesting capability under different types of excitation is of importance for the analysis and design of PEH systems. Many studies started the modeling and analysis of such an electromechanically coupled system under harmonic excitation. However, in real-world scenarios, environmental vibration might be irregular and impulsive. This article extends the equivalent impedance analysis from single harmonic to multiple harmonics for describing the complex dynamics and harvested power of a PEH system under nonharmonic base excitation. The proposed multiple harmonic analysis is based on the extended impedance method (EIM), which uniforms the impedance expressions of both linear and nonlinear components in a matrix form. The modeling principle and procedures of EIM are provided in detail. The power flow in the steady-state PEH systems and energy flow in the transient PEH systems are numerically discussed. Experiments based on a base-excited piezoelectric cantilever, as the energy harvester, and a full-wave bridge rectifier, as the power conditioning circuit, validate the EIM-based analysis, in terms of harvested power/energy prediction and dynamics description.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2021.3083319</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cantilever bridges ; Circuits ; Energy ; Energy flow ; Energy harvesting ; Energy harvesting (EH) ; Equilibrium flow ; extended impedance method (EIM) ; Fourier analysis ; Harmonic analysis ; Harmonic excitation ; Impedance ; Impedance method ; Integrated circuit modeling ; Mathematical analysis ; Mathematical model ; Mechatronics ; Modelling ; multiple harmonics model ; nonlinearity ; piezoelectric device ; Piezoelectricity ; Power conditioning ; Power flow ; Vibrations</subject><ispartof>IEEE/ASME transactions on mechatronics, 2022-04, Vol.27 (2), p.1185-1195</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-c60d3ba1e13481f58d8cbae18eeb5b0301216b05cad148406c03e7e3c8b2fa843</citedby><cites>FETCH-LOGICAL-c295t-c60d3ba1e13481f58d8cbae18eeb5b0301216b05cad148406c03e7e3c8b2fa843</cites><orcidid>0000-0003-2685-5587 ; 0000-0002-1128-3048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9442334$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9442334$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Yiming</creatorcontrib><creatorcontrib>Liang, Junrui</creatorcontrib><creatorcontrib>Liao, Yabin</creatorcontrib><title>Multiple Harmonics Extended Impedance Model of Piezoelectric Energy Harvesting Systems</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>In a piezoelectric energy harvesting (PEH) system, the dynamics and harvested power vary with different base excitation. Accurately predicting the energy harvesting capability under different types of excitation is of importance for the analysis and design of PEH systems. Many studies started the modeling and analysis of such an electromechanically coupled system under harmonic excitation. However, in real-world scenarios, environmental vibration might be irregular and impulsive. This article extends the equivalent impedance analysis from single harmonic to multiple harmonics for describing the complex dynamics and harvested power of a PEH system under nonharmonic base excitation. The proposed multiple harmonic analysis is based on the extended impedance method (EIM), which uniforms the impedance expressions of both linear and nonlinear components in a matrix form. The modeling principle and procedures of EIM are provided in detail. The power flow in the steady-state PEH systems and energy flow in the transient PEH systems are numerically discussed. Experiments based on a base-excited piezoelectric cantilever, as the energy harvester, and a full-wave bridge rectifier, as the power conditioning circuit, validate the EIM-based analysis, in terms of harvested power/energy prediction and dynamics description.</description><subject>Cantilever bridges</subject><subject>Circuits</subject><subject>Energy</subject><subject>Energy flow</subject><subject>Energy harvesting</subject><subject>Energy harvesting (EH)</subject><subject>Equilibrium flow</subject><subject>extended impedance method (EIM)</subject><subject>Fourier analysis</subject><subject>Harmonic analysis</subject><subject>Harmonic excitation</subject><subject>Impedance</subject><subject>Impedance method</subject><subject>Integrated circuit modeling</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mechatronics</subject><subject>Modelling</subject><subject>multiple harmonics model</subject><subject>nonlinearity</subject><subject>piezoelectric device</subject><subject>Piezoelectricity</subject><subject>Power conditioning</subject><subject>Power flow</subject><subject>Vibrations</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhoMoWKt_QC8LnlNndjfp5iil2kKLglW8LZvNpETy5W4q1l9vYounGYb3mRmeILhGmCBCcrdZz2eLCQeOEwFKCExOghEmEkNA-X7a9_00lFJE58GF9x8AIBFwFLytd2VXtCWxhXFVUxfWs_l3R3VGGVtWLWWmtsTWTUYla3L2XNBPQyXZzhWWzWty2_2AfpHvinrLXva-o8pfBme5KT1dHes4eH2Yb2aLcPX0uJzdr0LLk6gLbQyZSA0SCqkwj1SmbGoIFVEapSAAOcYpRNZkKJWE2IKgKQmrUp4bJcU4uD3sbV3zuet_0B_NztX9Sc3jCHgyFTik-CFlXeO9o1y3rqiM22sEPfjTf_704E8f_fXQzQEqiOgfSKTkQkjxC1s_bKo</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Gao, Yiming</creator><creator>Liang, Junrui</creator><creator>Liao, Yabin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2685-5587</orcidid><orcidid>https://orcid.org/0000-0002-1128-3048</orcidid></search><sort><creationdate>20220401</creationdate><title>Multiple Harmonics Extended Impedance Model of Piezoelectric Energy Harvesting Systems</title><author>Gao, Yiming ; Liang, Junrui ; Liao, Yabin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-c60d3ba1e13481f58d8cbae18eeb5b0301216b05cad148406c03e7e3c8b2fa843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cantilever bridges</topic><topic>Circuits</topic><topic>Energy</topic><topic>Energy flow</topic><topic>Energy harvesting</topic><topic>Energy harvesting (EH)</topic><topic>Equilibrium flow</topic><topic>extended impedance method (EIM)</topic><topic>Fourier analysis</topic><topic>Harmonic analysis</topic><topic>Harmonic excitation</topic><topic>Impedance</topic><topic>Impedance method</topic><topic>Integrated circuit modeling</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mechatronics</topic><topic>Modelling</topic><topic>multiple harmonics model</topic><topic>nonlinearity</topic><topic>piezoelectric device</topic><topic>Piezoelectricity</topic><topic>Power conditioning</topic><topic>Power flow</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yiming</creatorcontrib><creatorcontrib>Liang, Junrui</creatorcontrib><creatorcontrib>Liao, Yabin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Yiming</au><au>Liang, Junrui</au><au>Liao, Yabin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Harmonics Extended Impedance Model of Piezoelectric Energy Harvesting Systems</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>27</volume><issue>2</issue><spage>1185</spage><epage>1195</epage><pages>1185-1195</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>In a piezoelectric energy harvesting (PEH) system, the dynamics and harvested power vary with different base excitation. Accurately predicting the energy harvesting capability under different types of excitation is of importance for the analysis and design of PEH systems. Many studies started the modeling and analysis of such an electromechanically coupled system under harmonic excitation. However, in real-world scenarios, environmental vibration might be irregular and impulsive. This article extends the equivalent impedance analysis from single harmonic to multiple harmonics for describing the complex dynamics and harvested power of a PEH system under nonharmonic base excitation. The proposed multiple harmonic analysis is based on the extended impedance method (EIM), which uniforms the impedance expressions of both linear and nonlinear components in a matrix form. The modeling principle and procedures of EIM are provided in detail. The power flow in the steady-state PEH systems and energy flow in the transient PEH systems are numerically discussed. Experiments based on a base-excited piezoelectric cantilever, as the energy harvester, and a full-wave bridge rectifier, as the power conditioning circuit, validate the EIM-based analysis, in terms of harvested power/energy prediction and dynamics description.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2021.3083319</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2685-5587</orcidid><orcidid>https://orcid.org/0000-0002-1128-3048</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2022-04, Vol.27 (2), p.1185-1195 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_ieee_primary_9442334 |
source | IEEE Electronic Library (IEL) |
subjects | Cantilever bridges Circuits Energy Energy flow Energy harvesting Energy harvesting (EH) Equilibrium flow extended impedance method (EIM) Fourier analysis Harmonic analysis Harmonic excitation Impedance Impedance method Integrated circuit modeling Mathematical analysis Mathematical model Mechatronics Modelling multiple harmonics model nonlinearity piezoelectric device Piezoelectricity Power conditioning Power flow Vibrations |
title | Multiple Harmonics Extended Impedance Model of Piezoelectric Energy Harvesting Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Harmonics%20Extended%20Impedance%20Model%20of%20Piezoelectric%20Energy%20Harvesting%20Systems&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Gao,%20Yiming&rft.date=2022-04-01&rft.volume=27&rft.issue=2&rft.spage=1185&rft.epage=1195&rft.pages=1185-1195&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2021.3083319&rft_dat=%3Cproquest_RIE%3E2650297314%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650297314&rft_id=info:pmid/&rft_ieee_id=9442334&rfr_iscdi=true |