Multiple Harmonics Extended Impedance Model of Piezoelectric Energy Harvesting Systems

In a piezoelectric energy harvesting (PEH) system, the dynamics and harvested power vary with different base excitation. Accurately predicting the energy harvesting capability under different types of excitation is of importance for the analysis and design of PEH systems. Many studies started the mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2022-04, Vol.27 (2), p.1185-1195
Hauptverfasser: Gao, Yiming, Liang, Junrui, Liao, Yabin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a piezoelectric energy harvesting (PEH) system, the dynamics and harvested power vary with different base excitation. Accurately predicting the energy harvesting capability under different types of excitation is of importance for the analysis and design of PEH systems. Many studies started the modeling and analysis of such an electromechanically coupled system under harmonic excitation. However, in real-world scenarios, environmental vibration might be irregular and impulsive. This article extends the equivalent impedance analysis from single harmonic to multiple harmonics for describing the complex dynamics and harvested power of a PEH system under nonharmonic base excitation. The proposed multiple harmonic analysis is based on the extended impedance method (EIM), which uniforms the impedance expressions of both linear and nonlinear components in a matrix form. The modeling principle and procedures of EIM are provided in detail. The power flow in the steady-state PEH systems and energy flow in the transient PEH systems are numerically discussed. Experiments based on a base-excited piezoelectric cantilever, as the energy harvester, and a full-wave bridge rectifier, as the power conditioning circuit, validate the EIM-based analysis, in terms of harvested power/energy prediction and dynamics description.
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2021.3083319