Expressive TTS Training With Frame and Style Reconstruction Loss

We propose a novel training strategy for Tacotron-based text-to-speech (TTS) system that improves the speech styling at utterance level. One of the key challenges in prosody modeling is the lack of reference that makes explicit modeling difficult. The proposed technique doesn't require prosody...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2021, Vol.29, p.1806-1818
Hauptverfasser: Liu, Rui, Sisman, Berrak, Gao, Guanglai, Li, Haizhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a novel training strategy for Tacotron-based text-to-speech (TTS) system that improves the speech styling at utterance level. One of the key challenges in prosody modeling is the lack of reference that makes explicit modeling difficult. The proposed technique doesn't require prosody annotations from training data. It doesn't attempt to model prosody explicitly either, but rather encodes the association between input text and its prosody styles using a Tacotron-based TTS framework. This study marks a departure from the style token paradigm where prosody is explicitly modeled by a bank of prosody embeddings. It adopts a combination of two objective functions: 1) frame level reconstruction loss, that is calculated between the synthesized and target spectral features; 2) utterance level style reconstruction loss, that is calculated between the deep style features of synthesized and target speech. The style reconstruction loss is formulated as a perceptual loss to ensure that utterance level speech style is taken into consideration during training. Experiments show that the proposed training strategy achieves remarkable performance and outperforms the state-of-the-art baseline in both naturalness and expressiveness. To our best knowledge, this is the first study to incorporate utterance level perceptual quality as a loss function into Tacotron training for improved expressiveness.
ISSN:2329-9290
2329-9304
DOI:10.1109/TASLP.2021.3076369