Visual Analytics for RNN-Based Deep Reinforcement Learning
Deep reinforcement learning (DRL) targets to train an autonomous agent to interact with a pre-defined environment and strives to achieve specific goals through deep neural networks (DNN). Recurrent neural network (RNN) based DRL has demonstrated superior performance, as RNNs can effectively capture...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2022-12, Vol.28 (12), p.4141-4155 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep reinforcement learning (DRL) targets to train an autonomous agent to interact with a pre-defined environment and strives to achieve specific goals through deep neural networks (DNN). Recurrent neural network (RNN) based DRL has demonstrated superior performance, as RNNs can effectively capture the temporal evolution of the environment and respond with proper agent actions. However, apart from the outstanding performance, little is known about how RNNs understand the environment internally and what has been memorized over time. Revealing these details is extremely important for deep learning experts to understand and improve DRLs, which in contrast, is also challenging due to the complicated data transformations inside these models. In this article, we propose Deep Reinforcement Learning Interactive Visual Explorer ( DRL IVE), a visual analytics system to effectively explore, interpret, and diagnose RNN-based DRLs. Having focused on DRL agents trained for different Atari games, DRL IVE accomplishes three tasks: game episode exploration, RNN hidden/cell state examination, and interactive model perturbation. Using the system, one can flexibly explore a DRL agent through interactive visualizations, discover interpretable RNN cells by prioritizing RNN hidden/cell states with a set of metrics, and further diagnose the DRL model by interactively perturbing its inputs. Through concrete studies with multiple deep learning experts, we validated the efficacy of DRL IVE. |
---|---|
ISSN: | 1077-2626 1941-0506 |
DOI: | 10.1109/TVCG.2021.3076749 |